Chemical Papers

, Volume 62, Issue 3, pp 247–254 | Cite as

Entropy criterion of random states for granular material in a mixing process

  • Stanisław MasiukEmail author
  • Rafał M. Rakoczy
  • Marian Kordas
Original Paper


Mathematical assessment of homogenisation progress of the granular material mixing process is presented. The mixing process was realised using a vessel in the form of two partly penetrating horizontal cylinders equipped with two multi-ribbon agitators. The experimental system consisted of three sets of particles of different colour. Random states of the mixed granular material were characterised by the sampling procedure at different moments of the mixing process. Informational entropy as well as the flow of quantum of information were applied to describe the progress of the homogenisation process. Analysis of this process was based on experimental investigations in the form of informational entropy patterns and described by means of the average informational entropy or the quantum of information.


granular material multi-ribbon agitator informational characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, T., Iguchi, T., Aoki, K., & Nishimoto, K. (1998). A fractal analysis of solids mixing in two-dimensional vibrating particle beds. Powder Technology, 97, 63–71. DOI: S0032-5910(97)03400-1.CrossRefGoogle Scholar
  2. Asmar, B. N., Langston, P. A., & Matachett, A. J. (2002). A generalized mixing index in distinct element method simulation of vibrated particulate beds. Granular Matter, 4, 129–138. DOI: 10.1007/s10035-002-0112-8.CrossRefGoogle Scholar
  3. Austin, L. G. (1971). Introduction to the mathematical description of grinding as a rate process. Powder Technology, 5, 1–17. DOI: 10.1016/0032-5910(71)80064-5.CrossRefGoogle Scholar
  4. Austin, L. G. (1995). The graphical representation of ash liberation in milled coal. Chemical Engineering Journal, 59, 23–31. DOI: 10.1016/0923-0467(95)03009-3.Google Scholar
  5. Austin, L. G. (1999). A discussion of equations for the analysis of batch grinding data. Powder Technology, 106, 71–77. DOI: 10.1016/S0032-5910(99)00047-9.CrossRefGoogle Scholar
  6. Berthiaux, H., Heitzmann, D., & Dodds, J. D. (1996). Validation of a model of a stirred bead mill by comparing results obtained in batch and continuous mode grinding. International Journal of Mineral Processing, 44/45, 653–661. DOI: 10.1016/0301-7516(95)00073-9.CrossRefGoogle Scholar
  7. Berthiaux, H., & Mizonov, V. (2004). Applications of Markov chains in particulate process engineering: A review. The Canadian Journal of Chemical Engineering, 82, 1143–1168.CrossRefGoogle Scholar
  8. Bridgwater, J. (2003). The dynamics of granular materials — towards grasping the fundamentals. Granular Matter, 4, 175–181. DOI: 10.1007/s10035-002-0120-8.CrossRefGoogle Scholar
  9. Brone, D., Alexander, A., & Muzzio, F. J. (1998). Quantitative characterization of mixing of dry powders in V-blenders. AIChE Journal, 44, 271–278. DOI: 10.1002/aic.690440206.CrossRefGoogle Scholar
  10. Chen, S. J., Fan, L. T., & Watson, C. A. (1972). The mixing of solid particles in a motionless mixer — a stochastic approach. AIChE Journal, 18, 984–989. DOI: 10.1002/aic.690180515.CrossRefGoogle Scholar
  11. Cho, H., Yildirim, K., & Austin, L. G. (1998). The conversion of sedigraph size distributions to equivalent sub-sieve screen size distributions. Powder Technology, 95, 109–117. DOI: 10.1016/S0032-5910(97)03326-3.CrossRefGoogle Scholar
  12. Chou, S. T., Fan, L. T., & Hsu, J. P. (1987). Stochastic analysis of the transient behavior of an msmpr crystallizer; effects of the seed size distribution and size dependent growth, rate, Probability in the Engineering and Informational Sciences, 1, 383–404.CrossRefGoogle Scholar
  13. Gardner, R. P., & Austin, L. G. (1962). A chemical engineering treatment of batch grinding. In H. Rumpf and D. Behrens (Eds.), Proceedings of the 1st European Symposium on Size Reduction (pp. 217–248). Düsseldorf: Verlag Chemie.Google Scholar
  14. Heim, A., Olejnik, T. P., & Pawlak, A. (2005). Using statistical moments to describe grinding in a ball mill for industrial-scale process. Chemical Engineering and Processing, 44, 263–266. DOI: 10.1016/j.cep.2004.02.020.CrossRefGoogle Scholar
  15. Henrique, C., Batrouni, G., & Bideau, D. (2001). Diffusion as a mixing mechanism in granular materials. Physical Review E, 63, 011304. DOI: 10.1103/PhysRevE.63.011304.Google Scholar
  16. Hoyer, D. I. (1995). Batch grinding simulation — population balance models and self-similar size distributions. Materials Engineering, 8, 1275–1284. DOI: 10.1016/0892-6875(95)00095-8.Google Scholar
  17. Hulburt, H. M., & Katz, S. (1964). Some problems in particle technology: A statistical mechanical formulation. Chemical Engineering Science, 19, 555–574. DOI: 10.1016/0009-2509(64)85047-8.CrossRefGoogle Scholar
  18. Khakhar, D. V., McCarthy, J. J., & Ottino, J. M. (1997). Radial segregation of granular mixtures in a rotating cylinder. Physics of Fluids, 9, 3600–3614. DOI: 10.1063/1.869498.CrossRefGoogle Scholar
  19. Kruszyński, B. W., & Wójcik, R. (2001). Residual stress in grinding. Journal of Materials Processing Technology, 109, 254–257. DOI: 10.1016/S0924-0136(00)00807-4.CrossRefGoogle Scholar
  20. Lai, F. S., & Fan, L. T. (1975). Application of a discrete mixing model to the study of mixing of multicomponents solid particles. Industrial & Engineering Chemistry Process Design and Development, 14, 403–411. DOI: 10.1021/i260056a009.CrossRefGoogle Scholar
  21. Laurent, B. F. C., & Bridgwater, J. (2002). Performance of single and six-bladed powder mixers. Chemical Engineering Science, 57, 1695–1709. DOI: 10.1016/S0009-2509(02)00052-0.CrossRefGoogle Scholar
  22. Laurent, B. F. C., Bridgwater, J., & Parker, D. J. (2000). Motion in a particle bed agitated by a single bed. AIChE Journal, 46, 1723–1734. DOI: 10.1002/aic.690460904.CrossRefGoogle Scholar
  23. Makarow, J. I. (1975). Foundations of calculations of powder material blending, Doctor’s Thesis, Moscow: MIKhM.Google Scholar
  24. Marchiso, D. L., Vigil, R. D., & Fox R. O. (2003). Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chemical Engineering Science, 58, 3337–3351. DOI: 10.1016/S0009-2509(03)00211-2S0009-2509(03)00211-2.CrossRefGoogle Scholar
  25. Masiuk, S., & Rakoczy, R. (2006). The entropy criterion for the homogenisation process in a multi-ribbon blender. Chemical Engineering and Processing: Process Intensification, 45, 500–506. DOI: 10.1016/j.cep.2005.11.008.Google Scholar
  26. Masiuk, S., & Rakoczy, R. (2008). Kinetic equation of grinding process in mixing of granular material using probability density functions, transient operators and informational entropy. Chemical Engineering and Processing, 47, 200–208. DOI: 10.1016/j.cep.2007.03.001.Google Scholar
  27. McCarthy, J. J., & Ottino, J. M. (1998). Particle dynamics simulation: A hybrid technique applied to granular mixing. Powder Technology, 97, 91–99. DOI: S0032-5910(97)03391-3.CrossRefGoogle Scholar
  28. McCarthy, J. J., Khakhar, J. M., & Ottino, J. M. (2000). Computational studies of granular mixing. Powder Technology, 109, 72–82. DOI: S0032-5910(99)00228-4.CrossRefGoogle Scholar
  29. Moakher, M., Shinbrot, T., & Muzzio, F. J. (2000). Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology, 109, 58–71. DOI: S0032-5910(99)00227-2.CrossRefGoogle Scholar
  30. Molina-Boisseau, S., & Le Bolay, N. (2002). The mixing of a polymeric powder and the grinding medium in a shaker bead mill. Powder Technology, 123, 212–220. DOI: S0032-5910(01)00460-0.CrossRefGoogle Scholar
  31. Müller, F., Polke, R., & Schäfer, M. (1999). Model-based evaluation of grinding experiments. Powder Technology, 105, 243–249. DOI: 10.1016/S0032-5910(99)00144-8.CrossRefGoogle Scholar
  32. Niemi, A., Tian, L., & Ylinen, R. (1997). Model predictive control for grinding systems. Control Engineering Practice, 5, 271–278. DOI: 10.1016/S0967-0661(97)00236-0.CrossRefGoogle Scholar
  33. Ogawa, K., & Inoue, I. (1984). A new definition of quality of mixedness for multicomponents batch mixing. In Proceedings of 8th International Congress CHISA’84, 3–7 September 1984 (Pap. V3.56), Prague: CHISA.Google Scholar
  34. Ogawa, K., & Ito, S. (1975). A definition of quality of mixedness. Journal of Chemical Engineering of Japan, 8, 148–151.CrossRefGoogle Scholar
  35. Ogawa, K., Ito, S., & Matsumura, Y. (1980). Mixing rate in a stirred vessel. Journal of Chemical Engineering of Japan, 13, 324–326.CrossRefGoogle Scholar
  36. Pernenkil, L., & Cooney, C. L. (2006). A review on the continuous blending of powders. Chemical Engineering Science, 61, 720–742. DOI: 10.1016/j.ces.2005.06.016.CrossRefGoogle Scholar
  37. Ramkrishna, D. (2000). Population balances. Theory and applications to particulate system in engineering, San Diego: Academic Press.Google Scholar
  38. Randolph, A. D., & Larson, M. A. (1988). Theory of particulate processes. New York: Academic Press, New York.Google Scholar
  39. Runkana, V., Somasundaran, P., & Kaptur, P. C. (2004). Mathematical modeling of polymer-induced flocculation by charge neutralization. Journal of Colloid and Interface Science, 270, 347–358. DOI: 10.1016/j.jcis.2003.08.076.CrossRefGoogle Scholar
  40. Sudah, O. S., Coffin-Beach, D., & Muzzio, F. J. (2002). Quantitative characterization of mixing of free-flowing granular material in tote (bin)-blenders. Powder Technology, 126, 191–200. DOI: 10.1016/S0032-5910(02)00006-2.CrossRefGoogle Scholar
  41. Unger, D. R., Muzzio, F. J., & Brodkey, R. S. (1998). Experimental and numerical characterization of viscous flow and mixing in an impinging jet contactor. Canadian Journal of Chemical Engineering, 76, 546–555.CrossRefGoogle Scholar
  42. Valery, W., & Morrell, S. (1995). The development of a dynamic model for autogenous and semi-autogenous grinding. Materials Engineering, 8, 1285–1297. DOI: 10.1016/0892-6875(95)00096-9.Google Scholar
  43. Yekeler, M., Ozkan, A., & Austin, L. G. (2001). Kinetics of fine wet grinding in a laboratory ball mill. Powder Technology, 114, 224–228. DOI: 10.1016/S0032-5910(00)00326-0.CrossRefGoogle Scholar
  44. Yildirim, K., & Austin, L. G. (1998). The abrasive wear of cylindrical grinding media. Wear, 218, 15–20. DOI: 10.1016/S0043-1648(98)00198-7.CrossRefGoogle Scholar
  45. Zhukov, V., Mizonov, V., Filitchev, P., & Bernotat, S. (1998). The modelling of grinding process by means of the principle of maximum entropy. Powder Technology, 95, 248–253. DOI: S0032-5910(97)03344-5.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Stanisław Masiuk
    • 1
    Email author
  • Rafał M. Rakoczy
    • 1
  • Marian Kordas
    • 1
  1. 1.Institute of Chemical Engineering and Environmental Process ProtectionSzczecin University of TechnologySzczecinPoland

Personalised recommendations