Advertisement

Chemical Papers

, 62:239 | Cite as

Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1

  • Waldemar RymowiczEmail author
  • Anita Rywińska
  • Witold Gładkowski
Original Paper

Abstract

This study shows a possible microbial process for utilization of crude glycerol generated by the biodiesel industry for citric acid and erythritol production. Simultaneous production of citric acid and erythritol under nitrogen-limited conditions with glycerol as the carbon source was achieved with an acetate negative mutant of Y. lipolytica Wratislavia K1 in fed-batch cultivations. The effect of the initial glycerol concentration (from 30–180 g dm−3) on the citrate and erythritol production was investigated. As a result of the experiments, maximum citric acid production (110 g dm−3) and a very high amount of erythritol (81 g dm−3) were determined after 168 h of fed-batch cultivation with the initial glycerol concentration of 150 g dm−3 and the total glycerol concentration of 250 g dm−3. In addition, the citric acid to isocitric acid ratio of the products from this strain was 35.5:1.

Keywords

crude glycerol citric acid erythritol Yarrowia lipolytica fed-batch mode 

References

  1. Anastassiadis, S., Aivasidis, A., & Wandrey, C. (2002). Citric acid production by Candida strains under intracellular nitrogen limitation. Applied Microbiology and Biotechnology, 60, 81–87. DOI: 10.1007/s00253-002-1098-1.CrossRefGoogle Scholar
  2. Brown, B. D., Hsu, K. H., Hammond, E. G., & Glatz, B. A. (1989). A relationship between growth and lipid accumulation in Candida curvata D. Journal of Fermentation and Bioengineering, 68, 344–352. DOI: 10.1016/0922-338X(89)90010-X.CrossRefGoogle Scholar
  3. Barbirato, F., Chedaille, D., & Bories, A. (1997). Propionic acid fermentation from glycerol: comparison with conventional substrates. Applied Microbiology and Biotechnology, 47, 441–446. DOI: 10.1007/s002530050953.CrossRefGoogle Scholar
  4. Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology, 110, 73–84. DOI: 10.1016/j.jbiotec.2004.01.007.CrossRefGoogle Scholar
  5. Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Applied Biochemistry and Microbiology, 41, 418–425. DOI: 10.1007/s10438-005-0076-7.CrossRefGoogle Scholar
  6. Goldberg, D. M., & Ellis, G. (1983). Methods of Enzymatic Analysis. Weinheim: Verlag Chemie.Google Scholar
  7. Himmi, E. H., Boris, A., & Barbinato, F. (1999). Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresource Technology, 67, 123–128. DOI: 10.1016/S0960-8524(98)00109-6.CrossRefGoogle Scholar
  8. Imandi, S. B., Bandaru, V. V. R., Somalanka, S. R., & Garapati, H. R. (2007). Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme and Microbial Technology, 40, 1367–1372. DOI: 10.1016/j.enzmictec.2006.10.012.CrossRefGoogle Scholar
  9. Ishizuka, H., Wako, K., Kasumi, T., & Sasaki, T. (1989). Breeding of a mutant of Aureobasidium sp. with high erythritol production. Journal of Fermentation and Bioengineering, 68, 310–314. DOI: 10.1016/0922-338X(89)90003-2.CrossRefGoogle Scholar
  10. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100, 260–265. DOI: 10.1263/jbb.100.260.CrossRefGoogle Scholar
  11. Kim, J. W., Park, T. J., Ryu, D. D. Y., & Kim, J. Y. (2000). High cell density culture of Yarrowia lipolytica using a one-step feeding process. Biotechnology Progress, 16, 657–660. DOI: 10.1021/bp000037n.CrossRefGoogle Scholar
  12. Koh, E. S., Lee, T. H., Lee, D. Y., Kim, H. J., Ryu, Y. W., & Seo, J. H. (2003). Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnology Letters, 25, 2103–2105. DOI: 10.1023/B:BILE.0000007076.64338.ce.CrossRefGoogle Scholar
  13. Meesters, P. A. E. P., Huijberts, G. N. M., & Eggink, G. (1996). High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Applied Microbiology and Biotechnology, 45, 575–579. DOI: 10.1007/s002530050731.CrossRefGoogle Scholar
  14. Lee, K. H., Seo, J. H., & Ryu, Y. W. (2002). Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Korean Journal of Biotechnology and Bioengineering, 17, 509–514.Google Scholar
  15. Lee, P. C., Lee, W. G., Lee, S. Y., & Chang, H. N. (2001). Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succinici producens using glycerol as a carbon source. Biotechnology and Bioengineering, 72, 41–48. DOI: 10.1002/1097-0290(20010105)72:1〈41::AID-BIT6〉3.0.CO;2-N.CrossRefGoogle Scholar
  16. Levinson, W. E., Kurtzman, C. P., & Kuo, T. M. (2007). Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microbiology and Technology, 41, 292–295. DOI: 10.1016/j.enzmictec.2007.02.005.CrossRefGoogle Scholar
  17. Oh, D. K., Cho, C. H., Lee, J. K., & Kim, S. Y. (2001). Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. Journal of Industrial Microbiology and Biotechnology, 26, 248–252. DOI: 10.1038/sj.jim.7000122.CrossRefGoogle Scholar
  18. Papanikolaou, S., & Aggelis, G. (2003). Modelling aspects of the biotechnological valorization of raw glycerol: Production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 78, 542–547. DOI: 10.1002/jctb.831.CrossRefGoogle Scholar
  19. Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92, 737–744. DOI: 10.1046/j.1365-2672.2002.01577.x.CrossRefGoogle Scholar
  20. Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F., & Fick, M. (2000). High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 77, 191–208. DOI: 10.1016/S0168-1656(99)00217-5.CrossRefGoogle Scholar
  21. Park, Y. C., Lee, D. Y., Lee, D. H., Kim, K. Y., Ryu, Y. W., & Seo, J. H. (2005). Proteomics and physiology of erythritolproducing strains. Journal of Chromatography B, 815, 251–260. DOI: 10.1016/j.jchromb.2004.10.065.CrossRefGoogle Scholar
  22. Park, J. B., Seo, B. C., Kim, J. R., & Park, Y. K. (1998). Production of erythritol in fed-batch cultures of Trichosporon sp. Journal of Fermentation and Bioengineering, 86, 577–580. DOI: 10.1016/S0922-338X(99)80010-5.CrossRefGoogle Scholar
  23. Peksel, A., Torres, N. V., Liu, J., Juneau, G., & Kubicek, C. P. (2002). 13C-NMR analysis of glucose metabolism during citric acid production by Aspergillus niger. Applied Microbiology and Biotechnology, 58, 157–163. DOI: 10.1007/s00253-001-0839-x.CrossRefGoogle Scholar
  24. Pfeifer, V. F., Sohns, V. E., Conway, H. E., Lancaster, E. B., Dabic, S., & Griffin, E. L., Jr. (1960). Two-stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Industrial Engineering and Chemistry, 52, 201–205. DOI: 10.1021/ie50603a020.CrossRefGoogle Scholar
  25. Rymowicz, W., Rywińska, A., Żarowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60, 391–394. DOI: 10.2478/s11696-006-0071-3.CrossRefGoogle Scholar
  26. Soccol, C. R., Vandenberghe, L. P. S., Rodrigues, C., & Pandey, A. (2006). New perspectives for citric acid production and application. Food Technology and Biotechnology, 44, 141–149.Google Scholar
  27. Thompson, J. C., & He, B. B. (2004). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22, 261–265.Google Scholar
  28. Venter, T., Kock, J. L. F., Botes, P. J., Smit, M. S., Hugo, A., & Joseph, M. (2004). Acetate enhances citric acid production by Yarrowia lipolytica when grown on sunflower oil. Systematic and Applied Microbiology, 27, 135–138. DOI: 10.1078/072320204322881736.CrossRefGoogle Scholar
  29. Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142. DOI: 10.1007/s00253-004-1733-0.CrossRefGoogle Scholar
  30. Wittlich, P., Themann, A., & Vorlop, K. D. (2001). Conversion of glycerol to 1,3-prepanediol by a newly isolated thermophilic strain. Biotechnology Letters, 23, 463–466. DOI: 10.1023/A:1010329321185.CrossRefGoogle Scholar
  31. Wojtatowicz, M., Rymowicz, W., & Kautola, H. (1991). Comparison of different strains of the yeast Yarrowia lipolytica for citric acid production from glucose hydrol. Applied Biochemistry and Biotechnology, 31, 165–174.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Waldemar Rymowicz
    • 1
    Email author
  • Anita Rywińska
    • 1
  • Witold Gładkowski
    • 2
  1. 1.Department of Biotechnology and Food MicrobiologyWrocław University of Environmental and Life SciencesWrocławPoland
  2. 2.Department of Chemistry, Faculty of Food ScienceWrocław University of Environmental and Life SciencesWrocławPoland

Personalised recommendations