Advertisement

Chemical Papers

, Volume 62, Issue 3, pp 232–238 | Cite as

Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon

  • Paweł GłuszczEmail author
  • Katarzyna Zakrzewska
  • Irene Wagner-Doebler
  • Stanisław Ledakowicz
Original Paper

Abstract

Wide industrial use of mercury led to significant mercury pollution of the environment. It requires development of cleanup technologies which would allow treating large volumes of mercury contaminated water in a cost effective and environmentally friendly way. A novel bio-technology, developed from laboratory to industrial scale in Germany at HZI (former GBF), is based on enzymatic reduction of highly toxic Hg(II) to water-insoluble and relatively non-toxic Hg(0) using live mercury resistant bacteria immobilized on a porous carrier material in a fixed-bed bioreactor. Improvement of the original method was based on the use of activated carbon as a carrier for microorganisms and an adsorbent for mercury. Such integration of the process should increase the technology efficiency. In order to compare different carrier materials, activated carbon and pumice stones were used. The strain Pseudomonas putida was immobilized in bioreactors continuously fed with solutions of HgCl2 enriched with nutrients. Simultaneously, experiments in two more reactors were run in the absence of microorganisms to investigate the influence of nutrients on the adsorption process. In the bioreactor with activated carbon, the outlet mercury concentration was approximately 50 % of that supplied with pumice. It may be concluded that the use of activated carbon in a fixed-bed bioreactor enables improvement of the technology by process integration.

Keywords

wastewater treatment mercury bioreduction bioremediation activated carbon process integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40, 1335–1351. DOI: 10.1016/S0045-6535(99)00283-0.CrossRefGoogle Scholar
  2. von Canstein, H., Li, Y., Timmis, K. N., Deckwer, W.-D, & Wagner-Döbler, I. (1999). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environmental Microbiology, 65, 5279–5284.Google Scholar
  3. von Canstein, H., Li, Y., & Wagner-Döbler, I. (2001). Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnology & Bioengineering, 74, 212–219. DOI: 10.1002/bit.1110.CrossRefGoogle Scholar
  4. Chiarle, S., Ratto, M., & Rovatti, M. (2000). Mercury removal from water by ion-exchange resins adsorption. Water Research, 34, 2971–2978. DOI: 10.1016/S0043-1354(00)00044-0.CrossRefGoogle Scholar
  5. Eurochlor (2005). Chlorine online. Information resource. http://www.eurochlor.org
  6. Głuszcz, P., Zakrzewska, K., & Ledakowicz, S. (2004). Mercury sorption from aqueous solutions onto activated carbons. Inżynieria Chemiczna i Procesowa (Chemical and Process Engineering), 22, 234–237.Google Scholar
  7. Głuszcz, P., Zakrzewska, K., & Ledakowicz, S. (2005a). Mercury sorption in activated carbon in a flow-through fixed-bed column. Inżynieria i Aparatura Chemiczna, 4, 23–26. (in Polish)Google Scholar
  8. Głuszcz, P., Ledakowicz, S., Zakrzewska, K., & Deckwer, W.-D. (2005b). Modification of the microbiological method for mercury remediation of industrial wastewater. Journal of Biotechnology, 118, S163. DOI: 10.1016/j.jbiotec.2005.06.005.Google Scholar
  9. Głuszcz, P., Zakrzewska, K., Ledakowicz, S., Deckwer, W.-D., & Wagner-Döbler, I. (2006). Removal of mercury from industrial wastewater by bioreduction. In Proceedings of the 17 th International Congress of Chemical & Process Engineering, 27–31 August 2006. Prague: CHISA.Google Scholar
  10. Hobman, J. L., Essa, A. M. M., & Brown, N. L. (2002). Mercury resistance (mer) operons in enterobacteria. Biochemical Society Transactions, 30, 719–722.CrossRefGoogle Scholar
  11. Irukayama, K. (1977). Case history of Minamata disease. In T. Tubaki, & K. Irukayama (Eds.), Minamata disease (pp. 1–59). New York: Elsevier.Google Scholar
  12. Jaysankar, D., Sarkar, A., & Ramaiah, B. (2006). Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology, 15, 385–389. DOI: 10.1007/s10646-007-0142-4.CrossRefGoogle Scholar
  13. Kurland, L. T., Faro, S. N., & Siedler, H. (1960). Minamata disease: The outbreak of a neurologic disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurology, 1, 370–395.Google Scholar
  14. Ledakowicz, S., & Deckwer, W.-D. (1993). Mercury removal from aqueous solutions by biotransformation. Biotechnologia, 3(22), 99–107. (in Polish)Google Scholar
  15. Misra, T. K. (1992). Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid, 27, 4–16. DOI: 10.1016/0147-619X(92)90002-R.CrossRefGoogle Scholar
  16. Morby, A. P., Parkhill, J., Lee, B. T. O., Brown, N. L., Rouch, D. A., Camakaris, J., & Williams, T. (1991). Bacterial resistances to mercury and copper. Journal of Cellular Biochemistry, 46, 106–114. DOI: 10.1002/jcb.240460204.CrossRefGoogle Scholar
  17. Mukherjee, A. B., Zevenhoven, R., Brodersen, J., Hylander, L. D., & Bhattacharya, P. (2004). Mercury waste in the European Union: sources, disposal methods and risks. Resources, Conservation and Recycling, 42, 155–182. DOI: 10.1016/j.resconrec.2004.02.009.CrossRefGoogle Scholar
  18. Nagarethinam, K., & Ananthakrishan, R. (2001). Suitability of various indigenously prepared activated carbons for the adsorption of mercury(II) ions. Toxicological & Environmental Chemistry, 84, 7–19. DOI: 10.1080/02772240309816.Google Scholar
  19. Nies, D. H., & Silver, S., Eds. (2007). Molecular biology of heavy metals. Berlin: Springer Verlag.Google Scholar
  20. Osborn, A. M., Bruce, K. D., Strike, P., & Ritchie, D. A. (1997). Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiology Reviews, 19, 239–262. DOI: 10.1111/j.1574-6976.1997.tb00300.x.CrossRefGoogle Scholar
  21. Silver, S. (1996). Bacterial resistances to toxic metal ions — a review. Gene, 179(1), 9–19. DOI: 10.1016/S0378-1119(96)00323-X.CrossRefGoogle Scholar
  22. Summers, A. O., & Silver, S. (1972). Mercury resistance in a plasmid-bearing strain of Escherichia coli. Journal of Bacteriology, 112, 1228–1236.Google Scholar
  23. Summers, A. O., & Lewis, E. (1973). Volatilization of mercuric chloride by Mercury-Resistant Plasmid-Bearing Strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Bacteriology, 113, 1070–1072.Google Scholar
  24. Summers, A. O., & Silver, S. (1978). Microbial transformations of metals. Annu. Rev. Microbiol., 32, 637–672. doi:10.1146/annurev.mi.32.100178.003225.CrossRefGoogle Scholar
  25. Wagner-Döbler, I., von Canstein, H., Li, Y., Timmis, K. N., & Deckwer, W.-D. (2000). Removal of mercury from Chemical wastewater by microorganisms in technical scale. Environmental Science & Technology, 34, 4628–4634. DOI: 10.1021/es0000652.CrossRefGoogle Scholar
  26. Wagner-Doebler, I. (2003a). Pilot plant for bioremediation of mercury-containing industrial wastewater. Applied Microbiology and Biotechnology, 62, 124–133. DOI: 10.1007/s00253-003-1322-7.CrossRefGoogle Scholar
  27. Wagner-Doebler, I. (2003b). Removal of mercury from industrial wastewater by bacteria. 1. — Pilot-plant design. www.gbf.de/mercury_remediation1/pilotplant1.htmlGoogle Scholar
  28. Wagner-Doebler, I. (2004). Worldwide remediation of mercury hazards through biotechnology. http://www.biomercury.de
  29. Yamaguchi, A. I., Tamang, D. G., & Saier, M. H. (2007). Mercury transport in bacteria. Water, Air & Soil Pollution, 182, 219–234. DOI: 10.1007/s11270-007-9334-z.CrossRefGoogle Scholar
  30. Yin, Y., Allen, H. E., Huang, C. P., Sparks, D. L., & Sanders, P. F. (1997). Kinetics of mercury(II) adsorption and desorption by soil. Environmental Science & Technology, 31, 496–503. DOI: 10.1021/es9603214.CrossRefGoogle Scholar
  31. Zhao, X. W., Zhou, M. H., Li, Q. B., Lu, Y. H., He, N., Sun, D. H., & Deng, X. (2005). Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochemistry, 40, 1611–1616. DOI: 10.1016/j.procbio.2004.06.014.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Paweł Głuszcz
    • 1
    Email author
  • Katarzyna Zakrzewska
    • 1
  • Irene Wagner-Doebler
    • 2
  • Stanisław Ledakowicz
    • 1
  1. 1.Bioprocess Engineering DepartmentTechnical University of LodzLodzPoland
  2. 2.Helmholtz Zentrum fuer Infektionsforschung, HZIBraunschweigGermany

Personalised recommendations