Advertisement

Chemical Papers

, Volume 62, Issue 3, pp 227–231 | Cite as

Evaluation of a spectroscopic tandem method using information theory

  • Silvia RužičkováEmail author
  • Mikuláš Matherny
Original Parper
  • 18 Downloads

Abstract

To obtain vital spectroscopic data, a specific tandem spectroscopic method consisting of excitation in the DC are separated from the evaporation process was applied. Recently developed tandem spectroscopic methods require a complex evaluation process that can be described by metrological characteristics and from them derived parameters. Evaluation of the novel method optimization process is a part of the application of some chosen, specific, and generally accepted statistical methods. For this purpose, it is suitable to determine parameters of the information theory. It is necessary to compare experimental parameters of the information theory with tolerance parameters representing the values which are supposed to be achieved. To evaluate the given parameters, influence of the concentration range used was taken into account.

Keywords

information theory spectroscopic tandem method calibration statistical evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckschlager, K., & Štěpánek. (1979). Information theory as applied to chemical analysis. New York: Wiley Interscience.Google Scholar
  2. Eckschlager, K., & Danzer, K. (1994). Information theory in analytical chemistry. New York: Wiley Interscience.Google Scholar
  3. Flórián, K., & Matherny, M. (1986). Informationstheorie — ein Mittel für die Bewertung der spektrochemischen Mehrkomponenten-Analysenmethoden. Fresenius Zeitschrift für Analytische Chemie, 324, 525–530. DOI: 10.1007/BF00470408.CrossRefGoogle Scholar
  4. Kupka, K. (2002). QC.Expert™ [computer software]. Pardubice: TriloByte.Google Scholar
  5. Marinković, M., & Antonijević, V. G. (1980). Evaluation of the detection capability of a U-shaped D.C. arc for spectrometric analysis of solutions. Spectrochimica Acta Part B: Atomic Spectroscopy, 35, 129–138. DOI: 10.1016/0584-8547(80)80060-7.CrossRefGoogle Scholar
  6. Marković, Z., Todorović-Marković, B., Marinković, M., & Nenadović, T. (2003). Temperature measurement of carbon arc plasma in helium. Carbon, 41, 369–371. DOI: S0008-6223(02)00338-X. DOI: 10.1016/S0008-6223(02)00338-X.CrossRefGoogle Scholar
  7. Matherny, M., & Eckschlager, K. (1991). The use of information theory in atomic spectrochemistry III. Optimization of the analytical process. Chemical Papers, 45, 745–755.Google Scholar
  8. Matherny, M. (2002). The use of information theory in atomic spectrochemistry IV. Extension of the number of partial efficiency coefficients of the information theory. Chemical Papers, 56, 226–235.Google Scholar
  9. Meggers, W. F., Corlies, C. H., & Scribner, B. F. (1961). Tables of spectral line intensities. NBS Monograph No. 32. Washington: National Bureau of Standards.Google Scholar
  10. Meloun, M., Militký, J., & Forina, M. (1992). Chemometrics for analytical chemistry. Chichester: Ellis Horwood.Google Scholar
  11. Pavlović, M. S., Kuzmanović, M. M., Pavelkić, V. M., & Marinković, M. (2000). The role of demixing effect in analyte emission enhancement by easily ionized elements in d.c. plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 55, 1373–1384. DOI: 10.1016/S0584-8547(00)00242-1.CrossRefGoogle Scholar
  12. Ružičková, S., Jankovská, E., Koller, L., & Matherny, M. (2003). Evaporation of the chosen elements from auxiliary DC arc discharge and their excitation in the Marinković source. Chemical Papers, 57, 204–207.Google Scholar
  13. Ružičková, S., Koller, L., & Matherny, M. (2004). Optimization of the tandem method in the spectroscopy: Influence of the current intensity on the evaporation process and on the signal/background Ratio. Transactions of the Technical University of Košice, 2, 59–66.Google Scholar
  14. Ružičková, S., Koller, L., & Matherny, M. (2006). Investigation of the solid samples evaporation from the auxiliary DC arc discharge in the atomic emission spectroscopy. Chemical Papers, 60, 116–121. DOI: 10.2478/s11696-006-0021-0.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of MetallurgyTechnical University of KošiceKošiceSlovak Republic

Personalised recommendations