Skip to main content
Log in

Thallium fractionation in polluted environmental samples using a modified BCR three-step sequential extraction procedure and its determination by electrothermal atomic absorption spectrometry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Determination of thallium in polluted environmental samples and their extracts obtained by a modified BCR three-step sequential extraction procedure was used to study thallium distribution and mobility in the monitored polluted area affected by acidification (Šobov, Central Slovakia). The results of fractionation applied to 5 soil certified reference materials and 14 environmental samples show that the vast majority of thallium occurred in the residual fraction. This means that highly toxic thallium is strongly entrapped in the parent rock materials remains immobile and its environmental toxicity is therefore reduced. The limit of detection for thallium in the studied fractions was lower than 0.050 mg kg−1, the precision (RSD) of the ultratrace determination of thallium in the studied fractions was better than 17 % and the accuracy of the used method was verified by analyzing certified reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments — Biochemistry, bioavailability and risk of metals (2nd ed.), New York: Springer.

    Google Scholar 

  • Agnihotri, P. K., Deb, M. K., Mishra, R. K., & Thakur, M. (1998). Fractionation and spectrophotometric determination of thallium with N,N′-diphenylbenzamidine, brilliant green and cetylpyridinium chloride. Chemical Speciation and Bioavailability, 10, 53–60.

    Google Scholar 

  • Barrows, M. E., Petrocelli, S. R., & Macek, K. J. (1978). Bio-concentration and elimination of selected water pollutants by bluegill sunfish. In: R. Hague (Ed.), Dynamics, exposure and hazard assessment of toxic chemicals (pp. 379–392), Ann Arbor, MI: Ann Arbor Publishers, Inc.

    Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  • Boyarsky, I., & Crisan, A. D. (2006). Toxicity, Thallium. In: eMedecine. Retrieved May, 2006, from http://www.emedecine.com/EMERG/topic926.htm.

  • Cvetkovic, J., Arpadjan, S., Karadjova, I., & Stafilov, T. (2002). Determination of thallium in wine by electrothermal atomic absorption spectrometry after extraction preconcentration. Spectrochimica Acta Part B: Atomic Spectrometry 57, 1101–1106. DOI: 10.1016/S0584-8547(02)00032-0.

    Article  Google Scholar 

  • Ensafi, A. A., & Rezaei, B. (1998). Speciation of thallium by flow injection analysis with spectrofluorimetric detection. Mi-crochemical Journal, 60, 75–83. DOI: 10.1006/mchj.1998. 1625.

    CAS  Google Scholar 

  • Emers, U. (1988). Environmental exposure to thallium. The Science of the Total Environment, 71, 285–292. DOI: 10.1016/0048-9697(88)90199-4.

    Article  Google Scholar 

  • Frantz, G. & Carlson, R. M. (1987). Effects of rubidium, cesium, and thallium on interlayer potassium release from transvaal vermiculite. Soil Science Society of America Journal, 51, 305–308.

    Article  CAS  Google Scholar 

  • Jakubowska, M., Pasieczna, A., Zembrzuski, W., Swit, Z., & Lukaszewski, Z. (2007). Thallium in fractions of soil formed on floodplain terraces. Chemosphere, 66, 611–618. DOI: 10.1016/j.chemosphere.2006.07.098.

    Article  CAS  Google Scholar 

  • Jakubowska, M., Zembrzuski, W., & Lukaszewski, Z. (2006). Oxidative extraction versus total decomposition of soil in the determination of thallium. Talanta, 68, 1736–1739. DOI: 10.1016/j.talanta.2005.08.035.

    Article  CAS  Google Scholar 

  • Karlsson, S., Bäckström, M., & Lifvergren, T. (2003). Distribution of thallium in a contaminated lake. ICP Information Newsletter, 28, 556–557.

    Google Scholar 

  • Kemper, F. H., & Bertram, H. P. (1991). Thallium. In E. Merian (Ed.) Metals and their compounds in the environment: Occurrence, analysis and biological relevance, Chapter II. 29, (pp. 1227–1241). Weinheim: Wiley-VCH.

    Google Scholar 

  • Lin, T. S., & Nriagu, J. O., (1999). Thallium speciation in river waters with Chelex-100 resin. Analytica Chimica Acta, 395, 301–307. DOI: 10.1016/S0003-2670(99)00358-X.

    Article  CAS  Google Scholar 

  • Lukaszewski, Z., Karbowska, B., & Zembrzuski, W. (2003). Determination of mobile thallium in soil by flow injection differential pulse anodic stripping voltammetry. Electroanalysis, 15, 480–483. DOI: 10.1002/elan.200390057.

    Article  CAS  Google Scholar 

  • Medveï, J., Streško. V., Kubová J., & Polakovičová J., (1998). Efficiency of decomposition procedures for the determination of some elements in soils by atomic spectroscopic methods. Fresenius Journal of Analytical Chemistry, 360, 219–224. DOI: 10.1007/s002160050678.

    Article  CAS  Google Scholar 

  • Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478, 111–118. DOI: 10.1016/S0003-2670(02)01485-X.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntau, B. H., & Quevauviller, P. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of ex-tractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233. DOI: 10.1039/b001496f.

    Article  CAS  Google Scholar 

  • Sager, M. (1992). Speciation of thallium in river sediments by consecutive leaching techniques. Microchimica Acta, 106, 241–251. DOI: 10.1007/BF01242096.

    Article  CAS  Google Scholar 

  • Tsalev, D. L., & Slaveykova, V. I. (1992). Chemical modification in electrothermal atomic absorption spectrometry. Organization and classification of data by multivariate methods. Journal of Analytical Atomic Spectrometry, 7, 147–153. DOI: 10.1039/JA9920700147.

    Article  CAS  Google Scholar 

  • Van Reeuwijk, L. P. (Ed.) (1995). Procedures for soil analysis, 5th ed. Wageningen: International Soil Reference and Information Centre.

    Google Scholar 

  • Vidal, M., & Rauret, M., (1993). Two approaches for sequential extraction of radionuclides in soils: Batch and column methods. International Journal of Environmental Analytical Chemistry, 51, 85–95. DOI: 10.1080/03067319308027613.

    Article  CAS  Google Scholar 

  • Villar, M., Alava, F., Lavilla, I., & Bendicho, C. (2001). Operational speciation of thallium in environmental solid samples by electrothermal atomic absorption spectrometry according to the BCR sequential extraction scheme. Journal of Analytical Atomic Spectrometry, 16, 1424–1428. DOI: 10.1039/b106546g.

    Article  CAS  Google Scholar 

  • Volynsky, A. B. (2000). Mechanisms of action of platinum group modifiers in electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectrocopy, 55, 103–150. DOI: 10.1016/S0584-8547(99)00175-5.

    Article  Google Scholar 

  • Welz, B., Schlemmer, G., & Mudakavi, J. R. (1988). Palladium nitrate-magnesium nitrate modifier for graphite furnace atomic absorption spectrometry Part 2: Determination of arsenic, cadmium, copper, manganese, lead, antimony selenium and thallium in water. Journal of Analytical Atomic Spectrometry, 3, 695–701. DOI: 10.1039/JA9880300695.

    Article  CAS  Google Scholar 

  • Yang, C., Chen, Y., Peng, P., Li, C., Chang, X., & Xie, C. (2005). Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Science of the Total Environment, 341, 159–172. DOI: 10.1016/j.scitotenv.2004.09.024.

    Article  CAS  Google Scholar 

  • Ni, Z. M., & Shan, X. Q. (1987). The reduction and elimination of matrix interferences in graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectrocopy,, 42, 937–949. DOI: 10.1016/0584-8547(87)80106-4.

    Article  Google Scholar 

  • Zhu, D., & Xu, S. K. (2000). Enhancement of thallium response by flow injection hydride generation AAS using palladium and rhodamine B. Atomic Spectroscopy, 21, 136–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Medved’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medved’, J., Kališ, M., Hagarová, I. et al. Thallium fractionation in polluted environmental samples using a modified BCR three-step sequential extraction procedure and its determination by electrothermal atomic absorption spectrometry. Chem. Pap. 62, 168–175 (2008). https://doi.org/10.2478/s11696-008-0007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0007-1

Keywords

Navigation