Skip to main content
Log in

Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The investigations of selective methane oxidation to formaldehyde over T-Nb2O5, the mixture of M-Nb2O5 and H-Nb2O5 as well as H-Nb2O5 were carried out. The tests were conducted under atmospheric pressure, in the temperature range 420–750°C, using oxygen as the oxidizing agent. T-Nb2O5 samples were examined at the contact time 0.7–1.8 s (GHSV 2000–5143 h−1). Other polymorphic forms of niobium(V) oxide were examined at the contact time 0.9 s. Various polymorphic forms of Nb2O5 displayed various formaldehyde and carbon dioxide yield. Using H-Nb2O5 and M-Nb2O5 phases with a block type structure, made it possible to obtain higher formaldehyde selectivity (78 % at 0.9 s) as compared to T-Nb2O5 (47 % at 0.9 s), a polymorphic form which does not have a block type structure. However, the highest space time yield of formaldehyde (46 g per kg of catalyst per h) was obtained over T-Nb2O5 supported on SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alegre, V. V., da Silva, M. A. P., & Schmal, M. (2006). Catalytic combustion of methane over palladium alumina modified by niobia. Catalysis Communications, 7, 314–322. DOI: 10.1016/j.catcom.2005.10.018.

    CAS  Google Scholar 

  • Arena, F., Giordano, N., & Parmaliana, A. (1997). Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. II. Redox properties and reactivity of SiO2, MoO3/SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2 systems. Journal of Catalysis, 167, 66–76. DOI: 10.1006/jcat.1997.1546.

    Article  CAS  Google Scholar 

  • Batiot, C., & Hodnett, B. K. (1996). The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Applied Catalysis A, 137, 179–191. DOI: 10.1016/0926-860X(95)00322-3.

    Article  CAS  Google Scholar 

  • Berndt, H., Martin, A., Brückner, A., Schreier, E., Müller, D., Kosslick, H., Wolf, G.-U., & Lücke, B. (2000). Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. Journal of Catalysis, 191, 384–400. DOI: 10.1006/jcat.1999.2786.

    Article  CAS  Google Scholar 

  • Bone, W. A., & Wheeler, R. V. (1902). The slow oxidation of methane at low temperatures. Journal of the Chemical Society, Transactions, 81, 535–548. DOI: 10.1039/CT9028100535.

    Article  CAS  Google Scholar 

  • Dai, L.-X., Teng, Y.-H., Tabata K., Suzuki, E., & Tatsumi, T. (2000). Mo-containing SBA-1 mesoporous molecular sieves as catalysts for partial oxidation of methane. Chemistry Letters, 29, 794–795. DOI:10.1246/cl.2000.794.

    Article  Google Scholar 

  • de Lucas, A., Valverde, J. L., Cañizares, P., & Rodriguez, L. (1999). Partial oxidation of methane to formaldehyde over W/SiO2 catalysts. Applied Catalysis A, 184, 143–152. DOI: 10.1016/S0926-860X(99)00102-7.

    Article  Google Scholar 

  • de Lucas, A., Valverde, J. L., Rodriguez, L., Sanchez, P., & Garcia, M. T. (2000). Partial oxidation of methane to formaldehyde over Mo/HZSM-5 catalysts. Applied Catalysis A, 203, 81–90. DOI: 10.1016/S0926-860X(00)00472-5.

    Article  Google Scholar 

  • de Lucas, A., Valverde, J. L., Rodriguez, L., Sanchez, P., & Garcia, M. T. (2001). Modified W/HZSM-5 catalysts: structure and catalytic properties. Journal of Molecular Catalysis A, 171, 195–203. DOI: 10.1016/S1381-1169(01)00100-5.

    Article  Google Scholar 

  • Du, G., Lim, S., Yang, Y., Wang, C., Pfefferle, L., & Haller, G. L. (2006). Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde. Applied Catalysis A, 302, 48–61. DOI:10.1016/j.apcata.2005.12.013.

    Article  CAS  Google Scholar 

  • Faraldos, M., Banares, M. A., Anderson, J. A., Hu, H., Wachs, I. E., & Fierro, J. L. G. (1996). Comparison of silica-supported MoO3 and V2O5 catalysts in the selective partial oxidation of methane. Journal of Catalysis, 160, 214–221. DOI: 10.1006/jcat.1996.0140.

    Article  CAS  Google Scholar 

  • Fornés, V., López, C, Lopez, H. H., Martínez, A. (2003). Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. Applied Catalysis A, 249, 345–354. DOI: 10.1016/S0926-860X(03)00226-6.

    Article  CAS  Google Scholar 

  • Gatehouse, B. M., & Wadsley, A. D. (1964). The crystal structure of the high temperature form of niobium pen-toxide. Acta Crystallographica A, 17, 1545–1554. DOI: 10.1107/S0365110X6400384X.

    Article  CAS  Google Scholar 

  • Gebauer, D., Kaźmierczak, A., Paryjczak, T., & Rynkowski, J. (1995). Oxide catalyst for direct methane oxidation to methanol and formic aldehyde. Przemysl Chemiczny, 74, 209–212.

    CAS  Google Scholar 

  • Grzybowska-Świerkosz, B. (1993). Elementy katalizy hetero-genicznej. Warszawa: Wydawnictwo Naukowe PWN.

    Google Scholar 

  • Hargreaves, J. S. J., Hutchings, G. J., & Joyner, R. W. (1990). Control of product selectivity in the partial oxidation of methane. Nature, 348, 428–429. DOI: 10.1038/348428a0.

    Article  CAS  Google Scholar 

  • Kato, K., & Tamura, S. (1975). Die Kristallstruktur von T-Nb2O5. Acta Crystallographica B, 31, 673–677. DOI: 10.1107/S0567740875003603.

    Article  Google Scholar 

  • Koranne, M. M., Goodwin, J. G., & Marcelin, G. (1994). Oxygen Involvement in the Partial Oxidation of Methane on Supported and Unsupported V2O5. Journal of Catalysis, 148, 378–387. DOI: 10.1006/jcat.1994.1218.

    Article  CAS  Google Scholar 

  • Labinger, J. A. (1995). Methane activation in homogenous systems. Fuel Processing Technology, 42, 325–338. DOI: 10.1016/0378-3820(94)00107-5.

    Article  CAS  Google Scholar 

  • Lin, B., Wang, X., Guo, Q., Yang, W., Zhang, Q., & Wang, Y. (2003). Excellent catalytic performances of SBA-15-supported vanadium oxide for partial oxidation of methane to formaldehyde. Chemistry Letters, 32, 860–861. DOI: 10.1246/cl.2003.860.

    Article  CAS  Google Scholar 

  • Matsumura, H., Okumura, K., Shimamura, T., Ikenaga, N., Miyake, T., & Suzuki, T. (2006). Selective oxidation of methane to formaldehyde over antimony oxide-loaded catalyst. Journal of Molecular Catalysis A, 250, 122–130. DOI: 10.1016/j.molcata. 2006.01.043.

    Article  CAS  Google Scholar 

  • McCormick, R. L., & Alptekin, G. O. (2000). Comparison of alumina-, silica-, titania-, and zirconia-supported FePO4 catalysts for selective methane oxidation. Catalysis Today, 55, 269–280. DOI: 10.1016/S0920-5861(99)00243-6.

    Article  CAS  Google Scholar 

  • Mertin, W., Andersson, S., & Gruehn, R. (1970). Über die Kristallstruktur von M-Nb2O5. Journal of Solid State Chemistry, 1, 419–424. DOI: 10.1016/0022-4596(70)90124-6.

    Article  Google Scholar 

  • Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Applied Catalysis A, 277, 147–153. DOI: 10.1016/ j.apcata.2004.09.005.

    Article  CAS  Google Scholar 

  • Otsuka, K., & Hatano, M. (1992). Boron, Phosphorus, and Alkaline Earth-Metal Mixed Oxides as Active Catalysts in Partial Oxidation of Methane into Formaldehyde. Chemistry Letters, 21, 2397–2400. DOI: 10.1246/cl.1992.2397.

    Article  Google Scholar 

  • Otsuka, K., & Wang, Y. (2001). Direct conversion of methane into oxygenates. Applied Catalysis A, 222, 145–161. DOI: 10.1016/S0926-860X(01)00837-7.

    Article  CAS  Google Scholar 

  • Parmaliana, A., & Arena, F. (1997). Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. I. Catalytic behavior of SiO2, MoO3/SiO2, V2O5/ SiO2, TiO2, and V2O5/TiO2 systems. Journal of Catalysis, 167, 57–65. DOI: 10.1006/jcat.1997.1545.

    Article  CAS  Google Scholar 

  • Parmaliana, A., Frusteri, F., Mezzapica, A., Miceli, D., Scur-rell, M. S., & Giordano, N. (1993a). A Basic Approach to Evaluate Methane Partial Oxidation Catalysts. Journal of Catalysis, 143, 262–274. DOI: 10.1006/jcat.1993.1271.

    Article  CAS  Google Scholar 

  • Parmaliana, A., Frusteri, F., Mezzapica, A., Scurrel, M. S., & Giordano, N. (1993b). Novel high activity catalyst for partial oxidation of methane for formaldehyde. Journal of the Chemical Society, Chemical Communications, 751–753. DOI: 10.1039/C39930000751.

  • Schäfer, H., Gruehn, R., & Schulte, F. (1966). The modifications of niobium pentoxide. Angewandte Chemie International Edition in English, 5, 40–52. DOI: 10.1002/anie.196600401.

    Article  Google Scholar 

  • Schmal, M., Souza, M. M. V. M., Alegre, V. V., da Silva, M. A. P., Vargas César, D., & Perez, C. A. C. (2006). Methane oxidation — effect of support, precursor and pretreatment conditions — in situ reaction XPS and DRIFT. Catalysis Today, 118, 392–401. DOI: 10.1016/j.cattod.2006.07.026.

    Article  CAS  Google Scholar 

  • Sexton, A. W., Mac Giolla Coda, E., & Hodnett, B. K. (1998). A comparison of the performances of selected catalysts for the partial oxidation of methane to formaldehyde at elevated pressures. Catalysis Today, 46, 127–136. DOI: 10.1016/S0920-5861(98)00334-4.

    Article  CAS  Google Scholar 

  • Sojka, Z., Herman, R. G., & Klier, K. (1991). Selective oxidation of methane to formaldehyde over doubly copper-iron doped zinc oxide catalysts via a selectivity shift mechanism. Journal of the Chemical Society, Chemical Communications, 185–186. DOI: 10.1039/C39910000185.

  • Spencer, N. D. (1988). Partial oxidation of methane to formaldehyde by means of molecular oxygen. Journal of Catalysis, 109, 187–197. DOI: 10.1016/0021-9517(88)90197-2.

    Article  CAS  Google Scholar 

  • Sun, Q., Herman, R. G., & Klier, K. (1992). Selective oxidation of methane with air over silica catalysts. Catalysis Letters, 16, 251–261. DOI: 10.1007/BF00764337.

    Article  CAS  Google Scholar 

  • Suzuki, K., Hayakawa, T., Shimizu, M., & Takehira, K. (1995). Partial oxidation of methane over silica supported molybdenum oxide catalysts. Catalysis Letters, 30, 159–169. DOI: 10.1007/BF00813682.

    Article  CAS  Google Scholar 

  • Tabero, P. (2006). Preparation of Nb2O5 by thermal decomposition of ammonium niobium oxalate. In Proceedings of the 9th European symposium on thermal analysis and calorimetry, 27–31 August 2006 (TRS-P-54, p. 278). Kraków, Poland: AGH University of Science and Technology, Polish Society of Calorimetry and Thermal Analysis.

    Google Scholar 

  • Trigueiro, F. E., Ferreira, C. M., Volta, J-C., Gonzalez, W. A., & de Oliveria, P. G. (2006). Effect of niobium addition to Co/γ-Al2O3 catalyst on methane combustion. Catalysis Today, 118, 425–432. DOI: 10.1016/j.cattod.2006.07.030.

    Article  CAS  Google Scholar 

  • Wang, C.-B., Herman, R. G., Shi, C., Sun, Q., & Roberts, J. E. (2003). V2O5-SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties. Applied Catalysis A, 247, 321–333. DOI: 10.1016/S0926-860X(03)00105-4.

    Article  CAS  Google Scholar 

  • Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: University Press.

    Google Scholar 

  • Weng, T., & Wolf, E. E. (1993). Partial oxidation of methane on Mo/Sn/P silica supported catalysts. Applied Catalysis A, 96, 383–396. DOI: 10.1016/0926-860X(90)80024-9.

    Article  CAS  Google Scholar 

  • Yamada, Y., Ueda, A., Shioyama, H., & Kobayashi, T. (2003). High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements. Applied Catalysis A, 254, 45–58. DOI: 10.1016/S0926-860X(03)00262-X.

    Article  CAS  Google Scholar 

  • Sinev, M. Yu., Setiadi, S., & Otsuka, K. (1993). Selectivity control by oxygen pressure in methane oxidation over phosphate catalysts. Mendeleev Communications, 10–11.

  • Zhang, Q., Yang, W., Wang, X., Wang, Y., Shishido, T., & Takehira, K. (2005). Coordination structures of vanadium and iron in MCM-41 and the catalytic properties in partial oxidation of methane. Microporous and Mesoporous Materials, 77, 223–234. DOI: 10.1016/j.micromeso.2004.09.006.

    Article  CAS  Google Scholar 

  • Zhang, X., He, D., Zhang, Q., Ye, Q., Xu, B., & Zhu, Q. (2003). Selective oxidation of methane to formaldehyde over Mo/ZrO2 catalysts. Applied Catalysis A, 249, 107–117. DOI: 10.1016/S0926-860X(03)00185-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Michalkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P. et al. Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113 (2008). https://doi.org/10.2478/s11696-007-0086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0086-4

Keywords

Navigation