Skip to main content
Log in

HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A methodology for hazard investigation based on the integration of a mathematical model approach into hazard and operability analysis is presented. This approach is based on mathematical modelling of a process unit where both steady-state analysis, including analysis of the steady states multiplicity and stability, and dynamic simulation are used. The dynamic simulation serves for the investigation of consequences of failures of the main controlled parameters, i.e. inlet temperature, feed temperature and feed composition. This simulation is also very useful for the determination of the influence of failure duration on the reactor behaviour. On the other hand, the steady state simulation can predict the reactor behaviour in a wide range of failure magnitude and determine the parametric zones, where shifting from one steady state to another one may occur. A fixed bed reactor for methyl tertiary-butyl ether synthesis was chosen to identify potential hazard and operational problems of a real process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, F., Huss, R., Doherty, M. F., & Malone, M. F. (2002). Multiple steady states in reactive distillation: kinetic effects. Computers & Chemical Engineering, 26, 81–93. DOI: 10.1016/S0098-1354(01)00750-5.

    Article  Google Scholar 

  • Dimitriadis, V. D., Hackenberg, J., Shah, N., & Pantelides, C. C. (1996). A case study in hybrid process safety verification. Computers & Chemical Engineering, 20, S503–S508. DOI: 10.1016/0098-1354(96)00093-2.

    Article  CAS  Google Scholar 

  • Eizenberg, S., Shacham, M., & Brauner, N. (2006). Combining HAZOP with dynamic simulation-Applications for safety education. Journal of Loss Prevention in the Process Industries, 19, 754–761. DOI: 10.1016/j.jlp.2006.07.002.

    Article  Google Scholar 

  • Göring, M. H., & Schecker, H. G. (1993). HAZEXPERT-an integrated expert system to support hazard analysis in process plant design. Computers & Chemical Engineering, 17, 429–434. DOI: 10.1016/0098-1354(93)80262-L.

    Article  Google Scholar 

  • Graf, H., & Schmidt-Traub, H. (2001). An integrated approach to early process hazard identification of continuous and batch plants with statechart modelling and simulation. Computers & Chemical Engineering, 25, 61–72. DOI:10.1016/S0098-1354(00)00633-5.

    Article  CAS  Google Scholar 

  • Güttinger, T. E., & Morari, M. (1997). Predicting multiple steady states in distillation: Singularity analysis and reactive systems. Computers & Chemical Engineering, 21, S995–S1000. DOI:10.1016/S0098-1354(97)87632-6.

    Google Scholar 

  • Kubíček, M. (1976). Algorithm 502: Dependence of solution of nonlinear systems on a parameter [C5]. ACM Transaction on Mathematical Software, 2, 98–107. DOI: 10.1145/355666.355675.

    Article  Google Scholar 

  • Labovský, J., Jelemenský, Ľ, & Markoš, J. (2006). Safety analysis and risk identification for a tubular reactor using the HAZOP methodology. Chemical Papers, 60, 454–459. DOI: 10.2478/s11696-006-0082-0.

    Article  CAS  Google Scholar 

  • Mohl, K.-D., Kienle, A., Gilles, E.-D., Rapmund, P., Sundmacher, K., & Hoffmann, U. (1999). Steady-state multiplicities in reactive distillation columns for the production of fuel ethers MTBE and TAME: theoretical analysis and experimental verification. Chemical Engineering Science, 54, 1029–1043. DOI: 10.1016/S0009-2509(98)00327-3.

    Article  CAS  Google Scholar 

  • Molnár, A., Markoš, J., & Jelemenský, Ľ (2005). Some considerations for safety analysis of chemical reactors. Chemical Enginnering Research and Design, 83, 167–176. DOI: 10.1205/cherd.03284.

    Article  CAS  Google Scholar 

  • Mushtaq, F., & Chung, P. W. H. (2000). A systematic HAZOP procedure for batch processes, and its application to pipeless plants. Journal of Loss Prevention in the Process Industries, 13, 41–48. DOI: 10.1016/S0950-4230(99)00054-6.

    Article  Google Scholar 

  • Parmar, J. C., & Lees, F. P. (1987). The propagation of faults in process plants: Hazard identification. Reliability Engineering, 17, 277–302. DOI:10.1016/0143-8174(87)90093-X.

    Article  Google Scholar 

  • Rehfinger, A., & Hoffmann, U. (1990). Kinetics of methyl tertiary butyl ether liquid phase synthesis catalyzed by ion exchange resin. I. Intrinsic rate expression in liquid phase activities. Chemical Engineering Science, 45, 1605–1617. DOI: 10.1016/0009-2509(90)80013-5.

    Article  CAS  Google Scholar 

  • Schrans, S., de Wolf, S., & Baur, R. (1996). Dynamic simulation of reactive distillation: An MTBE case study. Computers & Chemical Engineering, 20, S1619–S1624. DOI: 10.1016/0098-1354(96)00275-X.

    Article  CAS  Google Scholar 

  • Shimada, Y., Suzuki, K., & Sayama, H. (1996). Computer-aided operability study. Computers & Chemical Engineering, 20, 905–913. DOI: 10.1016/0098-1354(95)00187-5.

    Article  CAS  Google Scholar 

  • Srinivasan, R., Dimitriadis, V. D., Shah, N., & Venkatasubramanian, V. (1997). Integrating knowledge-based and mathematical programming approaches for process safety verification. Computers & Chemical Engineering, 21, S905–S910. DOI: 10.1016/S0098-1354(97)87617-X.

    CAS  Google Scholar 

  • Švandová, Z., Kotora, M., Markoš, J., & Jelemenský, L. (2006). Dynamic behaviour of a CSTR with reactive distillation. Chemical Engineering Journal, 119, 113–120. DOI: 10.1016/j.cej.2006.03.032.

    Article  CAS  Google Scholar 

  • Švandová, Z., Markoš, J., & Jelemenský, L. (2005a). HAZOP analysis of CSTR with the use of mathematical modelling. Chemical Papers, 59, 464–468.

    Google Scholar 

  • Švandová, Z., Jelemenský, Ľ, Markoš, J., & Molnár, A. (2005b). Steady states analysis and dynamic simulation as a complement in the HAZOP study of chemical reactors. Process Safety and Environmental Protection, 83, 463–471. DOI: 10.1205/psep.04262.

    Article  CAS  Google Scholar 

  • Weatherill, T., & Cameron, I. T. (1989). A prototype expert system for hazard and operability studies. Computers & Chemical Engineering, 13, 1229–1234. DOI: 10.1016/0098-1354(89)87028-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L’udovít Jelemenský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labovský, J., Švandová, Z., Markoš, J. et al. HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach. Chem. Pap. 62, 51–57 (2008). https://doi.org/10.2478/s11696-007-0078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0078-4

Keywords

Navigation