Skip to main content
Log in

Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This work was focused on modeling of biochemical processes in a 40-L internal-loop airlift reactor. Due to different mixing in the specific zones of the reactor four main sections, bottom, riser, separator and downcomer, were recognized. Each zone was modeled by an adequate mixing model: bottom and separator sections by the model of ideally-stirred reactor; riser and downcomer sections by the model of plug-flow reactor with axial dispersion. In the model, the effects of mass transfer, hydrodynamics, and reaction kinetics were taken into account. The model of the reactor was experimentally verified by the aerobic enzymatic oxidation of glucose to gluconic acid. Simulations are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, G., Robinson, C. W., & Moo-Young, M. (1983). New criteria for application of the well-mixed model to gas-liquid mass transfer studies. Chemical Engineering Science, 38, 1845–1854. DOI: 10.1016/0009-2509(83)85040-4.

    Article  Google Scholar 

  • Blažej, M., Juraščík, M., Annus, J., & Markoš, J. (2004a). Measurement of mass transfer coefficient in an airlift reactor with internal loop using coalescent and non-coalescent liquid media. Journal of Chemical Technology and Biotechnology, 79, 1405–1411. DOI: 10.1002/jctb.1144.

    Article  Google Scholar 

  • Blažej, M., Kiša, M., & Markoš, J. (2004b). Scale influence on the hydrodynamics of an internal loop airlift reactor. Chemical Engineering and Processing, 43, 1519–1527. DOI:10.1016/j.cep.2004.02.003.

    Article  Google Scholar 

  • Camarasa, E., Carvalho, E., Meleiro, L. A. C., Maciel Filho, R., Domingues, A., Wild, G., Poncin, S., Midoux, N., & Bouillard, J. (2001). Development of a complete model for an air-lift reactor. Chemical Engineering Science, 56, 493–502. DOI: 10.1016/S0009-2509(00)00253-0.

    Article  CAS  Google Scholar 

  • Deckwer, W.-D., Burckhart, R., & Zoll, G. (1974). Mixing and mass transfer in tall bubble columns. Chemical Engineering Science, 29, 2177–2188. DOI: 10.1016/0009-2509(74)80025-4.

    Article  CAS  Google Scholar 

  • Deckwer, W.-D., & Schumpe, A. (1993). Improved tools for bubble column reactor design and scale-up. Chemical Engineering Science, 48, 889–911. DOI: 10.1016/0009-2509(93)80328-N.

    Article  CAS  Google Scholar 

  • Duke, F. R., Weibel, M., Page, D. S., Bulgrin, V. G., & Luthy, J. (1969). The glucose oxidase mechanism. Enzyme activation by substrate. Journal of American Chemical Society, 91, 3904–3909. DOI: 10.1021/ja01042a038.

    Article  CAS  Google Scholar 

  • Gibson, Q. H., Swoboda, B. E. P., & Massey, V. (1964). Kinetics and mechanism of action of glucose oxidase. The Journal of Biological Chemistry, 239, 3927–3934.

    CAS  Google Scholar 

  • Heijnen, J. J., & Van’t Riet, K. (1984). Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chemical Engineering Journal, 28, B21–B42. DOI:10.1016/0300-9467(84)85025-X.

    Article  CAS  Google Scholar 

  • Jia, X. Q., Wen, J. P., Jiang, Y., Liu, X. L., & Feng, W. (2006). Modeling of batch phenol biodegradation in internal loop airlift bioreactor with gas recirculation by Candida tropicalis. Chemical Engineering Science, 61, 3463–3475. DOI:10.1016/j.ces.2005.12.025.

    Article  CAS  Google Scholar 

  • Juraščík, M., Blažej, M., Annus, J., & Markoš, J. (2006a). Experimental measurements of volumetric mass transfer coefficient by the dynamic pressure-step method in internal loop airlift reactors of different scale. Chemical Engineering Journal, 125, 81–87. DOI: 10.1016/j.cej.2006.08.013.

    Article  Google Scholar 

  • Juraščík, M., Hucík, M., Sikula, I., Annus, J., & Markoš, J. (2006b). Influence of biomass on hydrodynamics of an internal loop airlift reactor. Chemical Papers, 60, 441–445. DOI:10.2478/s11696-006-0080-2.

    Article  Google Scholar 

  • Kanai, T., Ichikawa, J., Yoshikawa, H., & Kawase, Y. (2000). Dynamic modeling and simulation of continuous airlift bioreactors. Bioprocess and Biosystems Engineering, 23, 213–220. DOI: 10.1007/s004499900154.

    CAS  Google Scholar 

  • Kanai, T., Uzumaki, T., & Kawase, Y. (1996). Simulation of airlift bioreactors: steady-state performance of continuous culture processes. Computers and Chemical Engineering, 20, 1089–1099. DOI: 10.1016/0098-1354(95)00225-1.

    Article  CAS  Google Scholar 

  • Kaštánek, F., Zahradník, J., Kratochvíl, J., & Čermák, J. (1993). Chemical reactors for gas-liquid systems. Prague: Academia.

    Google Scholar 

  • Klein, J., Rosenberg, M., Markoš, J., Dolgoš, O., Krošlák, M., & Krištofíková, Ľ. (2002). Biotransformation of glucose to gluconic acid by Aspergillus niger-study of mass transfer in an airlift bioreactor. Biochemical Engineering Journal, 10, 197–205. DOI: 10.1016/S1369-703X(01)00181-4.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (1962). Chemical Reaction Engineering. New York: J. Wiley.

    Google Scholar 

  • Lo, C.-S., & Hwang, S.-J. (2004). Dynamic behavior of an internal-loop airlift bioreactor for degradation of waste gas containing toluene. Chemical Engineering Science, 59, 4517–4530. DOI: 10.1016/j.ces.2004.07.002.

    Article  CAS  Google Scholar 

  • Nakamura, T., & Yasuyuki, O. (1962). Kinetic studies on the action of glucose oxidase. The Journal of Biochemistry, 52, 214–220.

    CAS  Google Scholar 

  • Nicolella, C., van Loosdrecht, M. C. M., & Heijnen, S. J. (2000). Particle-based biofilm reactor technology. Trends in Biotechnology, 18, 312–320. DOI: 10.1016/S0167-7799(00)01461-X.

    Article  CAS  Google Scholar 

  • Reith, T., Renken, S., & Israël, B. A. (1968). Gas hold-up and axial mixing in the fluid phase of bubble columns. Chemical Engineering Science, 23, 619–629. DOI: 10.1016/0009-2509(68)89007-4.

    Article  CAS  Google Scholar 

  • Rischbieter, E., Schumpe, A., & Wunder, V. (1996). Gas solubilities in aqueous solutions of organic substances. Journal of Chemical and Engineering Data, 41, 809–812. DOI:10.1021/je960039c.

    Article  CAS  Google Scholar 

  • Rubio, F. C., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., & Grima, E. M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62, 71–86.

    Article  CAS  Google Scholar 

  • Rubio, F. C., Garcia, J. L., Molina, E., & Chisti, Y. (2001). Axial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models. Chemical Engineering Journal, 84, 43–55. DOI: 10.1016/S1385-8947(00)00261-8.

    Article  CAS  Google Scholar 

  • Schumpe, A. (1993). The estimation of gas solubilities in salt solutions. Chemical Engineering Science, 48, 153–158. DOI:10.1016/0009-2509(93)80291-W.

    Article  CAS  Google Scholar 

  • Sikula, I., Juraščík, M., & Markoš, J. (2006). Modelling of enzymatic reaction in an internal loop airlift reactor. Chemical Papers, 60, 446–453. DOI: 10.2478/s11696-006-0081-1.

    Article  CAS  Google Scholar 

  • Towell, G. D., & Ackerman, G. H. (1972). Axial mixing of liquid and gas in large bubble reactors. In Proceedings of 5th European/2nd International symposium on chemical reactor engineering, 2–4 May 1972 (pp. B3.1–B3.13). Amsterdam: Elsevier.

    Google Scholar 

  • Znad, H., Báleš, V., Markoš, J., & Kawase, Y. (2004). Modeling and simulation of airlift bioreactors. Biochemical Engineering Journal, 21, 73–81. DOI: 10.1016/j.bej.2004.05.005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Markoš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikula, I., Markoš, J. Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model. Chem. Pap. 62, 10–17 (2008). https://doi.org/10.2478/s11696-007-0073-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0073-9

Keywords

Navigation