Skip to main content

Advertisement

Log in

Photocatalytic reduction of CO2 over TiO2 based catalysts

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, K., Ohta, K., & Mizuno, M. (1994). Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53, 187–190. DOI:10.1016/0038-092X(94)90480-4.

    Article  CAS  Google Scholar 

  • Anpo, M., Yamashita, H., Ichinashi, Y., & Ehara, S. (1995). Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396, 21–26. DOI: 10.1016/0022-0728(95)04141-A.

    Article  Google Scholar 

  • Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101, 2632–2636. DOI:10.1021/jp962696h.

    Article  CAS  Google Scholar 

  • Anpo, M. Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., G., Park, D. R., Suzuki, Y., Koyano, K., & Tatsumi, T. (1998). Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44, 327–332. DOI: 10.1016/S0920-5861(98)00206-5.

    Article  CAS  Google Scholar 

  • Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. C. M. (2001). Photocatalytic degradation for environmental applications — a review. Journal of Chemical Technology and Biotechnology, 77, 102–116. DOI: 10.1002/jctb.532.

    Article  Google Scholar 

  • Bouras, P., Stathatos, E., & Lianos, P. (2007). Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis. B: Environmental, 73, 51–59. DOI:10.1016/j.apcatb.2006.06.007.

    Article  CAS  Google Scholar 

  • Dijkstra, J. W., & Jansen, D. (2004). Novel concepts for CO2 capture. Energy, 29, 1249–1257. DOI: 10.1016/j.energy.2004.03.084.

    Article  CAS  Google Scholar 

  • Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357, DOI:10.1021/cr00017a016.

    Article  CAS  Google Scholar 

  • Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., & Yanagida, S. (1997). Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 101, 8270–8278. DOI:10.1021/jp971621q.

    Article  CAS  Google Scholar 

  • Gokon, N., Hasegawa, N., Kaneko, H., Aoki, H., Tamaura, Y., & Kitamura, M. (2003). Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Solar Energy Materials and Solar Cells, 80. 335–341, DOI: 10.1016/j.solmat.2003.08.016.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, 56–58. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  • Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637–638. DOI: 10.1038/277637a0.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2005). Special report on carbon dioxide capture and storage. IPCC report. Retrieved January 10, 2007, from http://www.mnp.nl/ipcc/pages_media/SRCCS-final/ccsspm.pdf.

  • Kaneco, S., Kurimoto, H., Ohta, K., Mizuno, T., & Saji, A. (1997). Photocatalytic reduction of CO2 using TiO2 powders in liquid medium. Journal of Photochemistry and Photobiology A: Chemistry, 109, 59–63. DOI: 10.1016/S1010-6030(97)00107-X.

    Article  CAS  Google Scholar 

  • Kaneco, S., Shimizu, Y., Ohta, K., & Mizuno, T. (1998). Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115, 223–226. DOI: 10.1016/S1010-6030(98)00274-3.

    Article  CAS  Google Scholar 

  • Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., & Mizuno, T. (1999). Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy, 24, 21–30. DOI:10.1016/S0360-5442(98)00070-X.

    Article  CAS  Google Scholar 

  • Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (1997). Photoreduction of carbon dioxide with hydrogen over ZrO2. Chemical Communications, 1997, 841–844. DOI: 10.1039/a700185a.

    Article  Google Scholar 

  • Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., & Yoshida, S. (1999). Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126, 117–124. DOI: 10.1016/S1010-6030(99)00113-6.

    Article  CAS  Google Scholar 

  • Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000a). Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Physical Chemistry Chemical Physics, 2, 2635–2639. DOI: 10.1039/b001642j.

    Article  CAS  Google Scholar 

  • Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000b). Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2, 5302–5307. DOI: 10.1039/b005315p.

    Article  CAS  Google Scholar 

  • Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., & Yoshida, S. (2001). Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 3, 1108–1113. DOI: 10.1039/b008887k.

    Article  CAS  Google Scholar 

  • Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T., & Kaya, Y. (2004). Time to realization: Evaluation of CO2 capture technology R&Ds by GERT (Graphical Evaluation and Review Technique) analyses. Energy, 29, 1297–1308. DOI:10.1016/j.energy.2004.03.088.

    Article  CAS  Google Scholar 

  • Lin, W. Y., Han, H. X., & Frei, H. (2004). CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. Journal of Physical Chemistry B, 108, 18269–18273. DOI: 10.1021/jp040345u.

    Article  CAS  Google Scholar 

  • Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758. DOI:10.1021/cr00035a013.

    Article  CAS  Google Scholar 

  • Liu, B.-J., Torimoto, T., Matsumoto, H., & Yoneyama, H. (1997). Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 108, 187–192. DOI: 10.1016/S1010-6030(97)00082-8.

    Article  CAS  Google Scholar 

  • Liu, B.-J., Torimoto, T., & Yoneyama, H. (1998). Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 115, 227–230. DOI: 10.1016/S1010-6030(98)00272-X.

    Article  CAS  Google Scholar 

  • Matthews, R. W., & McEvoy, S. R. (1992). A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. Journal of Photochemistry and Photobiology A: Chemistry, 66, 355–366. DOI: 10.1016/1010-6030(92)80008-J.

    Article  CAS  Google Scholar 

  • Meisen, A., & Shuai, X. (1997). Research and development issues in CO2 capture. Energy Conversion and Management, 38, S37–S42. DOI: 10.1016/S0196-8904(96)00242-7.

    Article  CAS  Google Scholar 

  • Metz, B., Davidson, O., Swart, R., & Pan, J. (2001). Climate change 2001: mitigation. Contribution of working groups III to the third assessment report of the Intergovernmental Panel on Climate Change. Retrieved January 10, 2007, from http://www.grida.no/climate/ipcc tar/wg3/index.htm.

  • Mizuno, T., Adachi, K., Ohta, K., & Saji, A. (1996). Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98, 87–90. DOI: 10.1016/1010-6030(96)04334-1.

    Article  CAS  Google Scholar 

  • Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8, 1546–1549. DOI:10.1016/j.catcom.2007.01.006.

    Article  CAS  Google Scholar 

  • Riemer, P. (1996). Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme. Energy Conversion and Management, 37, 665–670. DOI: 10.1016/0196-8904(95)00237-5.

    Article  Google Scholar 

  • Sasirekha, N., Basha, S. J. S., & Shanthi, K. (2006). Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 62, 169–180. DOI: 10.1016/j.apcatb.2005.07.009.

    Article  CAS  Google Scholar 

  • Sayama, K., & Arakawa, H. (1993). Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over zirconia catalyst. Journal of Physical Chemistry, 97, 531–533. DOI: 10.1021/j100105a001.

    Article  CAS  Google Scholar 

  • Subrahmanyam, M., Kaneco, S., & Alonso-Vante, N. (1999). A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23, 169–174. DOI: 10.1016/S0926-3373(99)00079-X.

    Article  CAS  Google Scholar 

  • Tan, S. S., Zou, L., & Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115, 269–273. DOI:10.1016/j.cattod.2006.02.057.

    Article  CAS  Google Scholar 

  • Tan, S. S., Zou, L., & Hu, E. (2007). Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials, 8, 89–92. DOI: 10.1016/j.stam.2006.11.004.

    Article  Google Scholar 

  • Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. Journal Physical Chemistry B, 108, 346–354. DOI: 10.1021/jp0362943.

    Article  CAS  Google Scholar 

  • Tseng, I.-H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37, 37–48. DOI: 10.1016/S0926-3373(01)00322-8.

    Article  CAS  Google Scholar 

  • Tseng, I.-H., Wu, J. C. S., & Chou H.-Y. (2004). Effects of solgel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis, 221, 432–440. DOI:10.1016/j.jcat.2003.09.002.

    Article  CAS  Google Scholar 

  • Ulagappan, N., & Frei, H. (2000). Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. Journal of Physical Chemistry A, 104, 7834–7839. DOI: 10.1021/jp001470i.

    Article  CAS  Google Scholar 

  • Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 45, 2558–2568. DOI:10.1021/ie0505763.

    Article  CAS  Google Scholar 

  • Wu, J. C. S., Lin, H.-M., & Lai, C.-L. (2005). Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General, 296, 194–200. DOI:10.1016/j.apcata.2005.08.021.

    Article  CAS  Google Scholar 

  • Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45, 717–721. DOI:10.1016/j.carbon.2006.11.028.

    Article  CAS  Google Scholar 

  • Yamashita, H., Shiga, A., Kawasaki, S., Ichihashi, Y., Ehara, S., & Anpo, M. (1995). Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energy Conversion, 36, 617–620. DOI:10.1016/0196-8904(95)00081-N.

    Article  CAS  Google Scholar 

  • Yamashita, H., Fujii, Y., Ichinashi, Y., Zhang, S. G., Ikeue, K., Park, D. R., Koyano, K., Tatsumi, T., & Anpo, M. (1998). Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45, 221–227. DOI: 10.1016/S0920-5861(98)00219-3.

    Article  CAS  Google Scholar 

  • Yu, Y., Yu, J. C., Yu, J.-G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Ding, L., Ge, W.-K., & Wong, P.-K. (2005). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 289, 186–196. DOI: 10.1016/j.apcata.2005.04.057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Kočí.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kočí, K., Obalová, L. & Lacný, Z. Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem. Pap. 62, 1–9 (2008). https://doi.org/10.2478/s11696-007-0072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0072-x

Keywords

Navigation