Skip to main content
Log in

Mechanism of thermal decomposition of cobalt acetate tetrahydrate

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The thermal decomposition of cobalt acetate tetrahydrate (Co(CH3COO)2 · 4H2O) has been studied via thermogravimetric (TG) analysis, in situ X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results of TG and XRD showed that the parent salt melted and then the dissolved crystalline water was vaporized in two steps. The dehydration process was followed by a major step concerning the decomposition of the acetate group, leading to basic acetate as an intermediate, which then produced CoO and Co in N2 and H2 atmosphere, respectively. Three decomposition intermediates Co(CH3COO)2 · 0.5H2O, Co(CH3COO)2, and Co(OH)(CH3COO) were presumed. In situ XRD experiments revealed that the intermediate basic acetate was poorly crystallized or even amorphous. Evolved gases analysis indicated that the volatile products of acetate decomposition were water vapor, acetic acid, ethylenone, acetone, and CO2. A detailed thermal decomposition mechanism of Co(CH3COO)2 · 4H2O was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bowker, M. and Cassidy, T. J., J. Catal. 174, 65 (1998).

    Article  CAS  Google Scholar 

  2. Sarellas, A., Niakolas, D., Bourikas, K., Vakros, J., and Kordulis, C., J. Colloid Interface Sci. 295, 165 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Raróg-Pilecka, W., Miskiewicz, E., Matyszek, M., Kaszkur, Z., Kepinski, L., and Kowalczyk, Z., J. Catal. 237, 207 (2006).

    Article  CAS  Google Scholar 

  4. Zhou, L., Xu, J., Miao, H., Wang, F., and Li, X., Appl. Catal., A 292, 223 (2005).

    Article  CAS  Google Scholar 

  5. Storsæter, S., Borg, Ø., Blekkan, E. A., and Holmen, A., J. Catal. 231, 405 (2005).

    Article  CAS  Google Scholar 

  6. Hussein, G. A. M., Powder Technol. 118, 285 (2001).

    Article  CAS  Google Scholar 

  7. Hussein, G. A. M. and Balboul, B. A. A., Powder Technol. 103, 156 (1999).

    Article  CAS  Google Scholar 

  8. Syukri, Ban, T., Ohya, Y., and Takahashi, Y., Mater. Chem. Phys. 78, 645 (2003).

    Article  CAS  Google Scholar 

  9. Girardon, J. S., Lermontov, A. S., Gengembre, L., Chernavskii, P. A., Griboval-Constant, A., and Khodakov, A. Y., J. Catal. 230, 339 (2005).

    Article  CAS  Google Scholar 

  10. Alshehri, S. M., Monshi, M. A. S., Abd El-Salam, N. M., and Mahfouz, R. M., Thermochim. Acta 363, 61 (2000).

    Article  CAS  Google Scholar 

  11. Ingier-Stocka, E. and Grabowska, A., J. Therm. Anal. 54, 115 (1998).

    Article  CAS  Google Scholar 

  12. De Jesus, J. C., Gonzalez, I., Quevedo, A., and Puerta, T., J. Mol. Catal. A: Chem. 228, 283 (2005).

    Article  CAS  Google Scholar 

  13. Nickolov, Z., Georgiev, G., Stoilova, D., and Ivanov, I., J. Mol. Struct. 354, 119 (1995).

    Article  CAS  Google Scholar 

  14. Hussein, G. A. M., Mekhemer, G. A. H., and Balboul, B. A. A., Phys. Chem. Chem. Phys. 2, 2033 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wanjun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanjun, T., Donghua, C. Mechanism of thermal decomposition of cobalt acetate tetrahydrate. Chem. Pap. 61, 329–332 (2007). https://doi.org/10.2478/s11696-007-0042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-007-0042-3

Keywords

Navigation