Skip to main content
Log in

Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Comparison of equilibrium and nonequilibrium models of a CSTR with total condenser focused on the multiple steady states and dynamic behaviour was carried out. The steady-state behaviour of the model system, MTBE synthesis from methanol and isobutene in a reactive distillation column, was studied in terms of the input parameters, i. e. feed flow rate of methanol or butenes, reflux ratio, and mass of catalyst. The dynamic behaviour of the system during the start-up was investigated and perturbations of manipulated variables were found to cause transitions between the parallel steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

total interfacial area m2

c:

molar concentration mol m−3

C p :

heat capacity J mol−1 K−1

D:

diffusion coefficient m2 s−1

ε:

energy transfer rate J s−1

F:

feed stream mol s−1

h:

heat transfer coefficient J s−1 m−2 K−1

H:

molar enthalpy J mol−1

Δr H :

heat of reaction J mol−1

J:

molar diffusion flux relative to the molar average velocity mol m−2 s−1

[k]:

matrix of the multicomponent mass transfer coefficients m s−1

K i :

vapour-liquid equilibrium constant for component i

L:

liquid flow rate mol s−1

Le:

Lewis number (= λρ −1 C −1p D −1)

L TC :

liquid flow rate from the total condenser to the reactor mol s−1

m c :

mass of catalyst kg

N F :

number of feed streams

N I :

number of components

N R :

number of reactions

N:

mass transfer rate mol s−1

P:

pressure of the system Pa

P 0in :

vapour pressure of pure component i Pa

Q:

heating rate J s−1

r:

reaction rate mol kg−1 s−1

R:

gas constant J mol−1 K−1

R x :

reflux ratio

t:

time s

T:

temperature K

U:

molar hold-up mol

V:

vapour flow rate mol s−1

V Lr :

volumetric liquid hold-up in the CSTR m3

V Vr :

volumetric vapour hold-up in the CSTR m3

X MeOH :

conversion of methanol

x:

mole fraction in the liquid phase

y:

mole fraction in the vapour phase

ε:

heat transfer rate factor

γ:

activity coefficient

κ:

binary mass transfer coefficient m s−1

λ:

thermal conductivity W m−1 K−1

ν:

stoichiometric coefficient

ρ:

molar density mol m−3

o:

initial conditions

I:

referring to the interface

L:

referring to the liquid phase

V:

referring to the vapour phase

av:

averaged value

f:

feed stream index

i:

component index

j:

reaction index

m:

mixture property

t:

referring to the total mixture

TC:

referring to the total condenser

References

  1. Sundmacher, K., Uhde, G., and Hoffmann, U., Chem. Eng. Sci. 54, 2839 (1999).

    Article  CAS  Google Scholar 

  2. Taylor, R. and Krishna, R., Chem. Eng. Sci. 55, 5183 (2000).

    Article  CAS  Google Scholar 

  3. Mohl, K.-D., Kienle, A., Gilles, E.-D., Rapmund, P., Sundmacher, K., and Hoffmann, U., Chem. Eng. Sci. 54, 1029 (1999).

    Article  CAS  Google Scholar 

  4. Hauan, S., Hertzberg, T., and Lien, K. M., Comput. Chem. Eng. 19, 327 (1995).

    Article  Google Scholar 

  5. Hauan, S., Hertzberg, T., and Lien, K. M., Comput. Chem. Eng. 21, 1117 (1997).

    Article  CAS  Google Scholar 

  6. Higler, A. P., Taylor, R., and Krishna, R., Chem. Eng. Sci. 54, 1389 (1999).

    Article  CAS  Google Scholar 

  7. Schrans, S., De Wolf, S., and Baur, R., Comput. Chem. Eng. 20, S1619 (1996).

    Article  CAS  Google Scholar 

  8. Singh, B. P., Singh, R., Pavan Kumar, M. V., and Kaistha, N., J. Loss Prevent. Proc. 18, 283 (2005).

    Article  Google Scholar 

  9. Sneesby, M. G., Tade, M. O., and Smith, T. N., Comput. Chem. Eng. 22, 879 (1998).

    Article  CAS  Google Scholar 

  10. Thiel, C., Sundmacher, K., and Hoffmann, U., Chem. Eng. Sci. 52, 993 (1997).

    Article  CAS  Google Scholar 

  11. Šoóš, M., Markoš, J., and Jelemenský, L’, Petroleum & Coal 43, 188 (2001).

    Google Scholar 

  12. Wang, S. J., Wong, D. S. H., and Lee, E. K., J. Process Contr. 13, 503 (2003).

    Article  CAS  Google Scholar 

  13. Jacobs, R. and Krishna, R., Ind. Eng. Chem. Res. 32, 1706 (1993).

    Article  CAS  Google Scholar 

  14. Alejski, K. and Duprat, F., Chem. Eng. Sci. 51, 4237 (1996).

    Article  CAS  Google Scholar 

  15. Taylor, R. and Krishna, R., Multicomponent Mass Transfer. Wiley, New York, 1993.

    Google Scholar 

  16. Baur, R., Higler, A. P., Taylor, R., and Krishna, R., Chem. Eng. J. 76, 33 (2000).

    Article  CAS  Google Scholar 

  17. Kooijman, H. A. and Taylor, R., The ChemSep Book. Books on Demand, Norderstedt, 2000.

    Google Scholar 

  18. Higler, A., Taylor, R., and Krishna, R., Comput. Chem. Eng. 22, 111 (1998).

    Article  Google Scholar 

  19. Krishnamurthy, R. and Taylor, R., AIChE J. 31, 449 (1985).

    Article  CAS  Google Scholar 

  20. Krishnamurthy, R. and Taylor, R., AIChE J. 31, 456 (1985).

    Article  CAS  Google Scholar 

  21. Kubíček, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures. Springer, New York, 1983.

    Google Scholar 

  22. Kubíček, M., ACM Trans. Math. Soft. 2, 98 (1976).

    Article  Google Scholar 

  23. Marek, M. and Schreiber, I., Chaotic Behaviour of Deterministic Dissipative Systems. Academia, Prague, 1991.

    Google Scholar 

  24. Schreiber, I., User’s Guide to Cont. Prague Institute of Chemical Technology, Prague, 2002.

    Google Scholar 

  25. http://netlib3.cs.utk.edu/cgi-bin/search.pl?query=gams/I1a2%2A.

  26. Rehfinger, A. and Hoffmann, U., Chem. Eng. Sci. 45, 1605 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Markoš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Švandová, Z., Markoš, J. & Jelemenský, L. Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models. Chem. Pap. 60, 432–440 (2006). https://doi.org/10.2478/s11696-006-0079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-006-0079-8

Keywords

Navigation