Skip to main content
Log in

Influence of medium on the kinetics of oxidation of iron(II) ion with t-butyl hydroperoxide

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The oxidation of iron(II) with tert-butyl hydroperoxide was investigated in the absence of oxygen in water, methanol, and the dichloromethane—methanol solvent mixture (φr = 2:1). The oxidation rate depends on solvent polarity; measured in the presence of SCN at constant 0.8 mmol dm−3 HCl, the rate constant increases with the polarity decrease passing from water and methanol to the dichloromethane—methanol solvent mixture. Further, in non-aqueous solutions at this acid concentration the rate constant was higher than the rate constant in the presence of Cl only. The oxidation rate measured in the [FeCl]2+ complex in dichloromethane—methanol was slow in acidic medium and increased by decreasing the acid concentration. Approaching the physiological pH conditions the rate constant attained the value of an order of magnitude of 103 dm3 mol−1 s−1, while very little alteration of stoichiometry of the oxidation reaction was observed. The rate constant measured in the presence of Cl strongly depends on electrolyte concentration at concentrations less than 0.5 mmol dm−3 HCl, both in MeOH and the solvent mixture. Based on these results, a possible mechanism of the influence of solvent, acidity, and ligand type on the rate constant is discussed. We assume that the oxidation proceeds by an inner-sphere mechanism considering that the breakdown of the successor inner-sphere complex forming reactive alkoxyl radicals is probably the rate-limiting step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quian, S. Y. and Buettner, G. R., Free Radical Biol. Med. 26, 1447 (1999).

    Article  Google Scholar 

  2. Huang, X., Dai, J., Fournier, J., Ali, A. M., Zhang, Q., and Frenkel, K., Free Radical Biol. Med. 32, 84 (2002).

    Article  CAS  Google Scholar 

  3. Ohyashiki, T., Karino, T., and Matsui, K., Biochim. Biophys. Acta 1170, 182 (1993).

    PubMed  CAS  Google Scholar 

  4. Schafer, F. Q. and Buettner, G. R., Free Radical Biol. Med. 28, 1175 (2000).

    Article  CAS  Google Scholar 

  5. Bucher, J. R., Tien, M., and Aust, S. D., Biochem. Biophys. Res. Commun. 111, 777 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. Goddard, J. G. and Sweeney, J. D., Arch. Biochem. Biophys. 259, 372 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. Ursini, F., Maiorino, M., Hochstein, P., and Ernster, L., Free Radical Biol. Med. 6, 31 (1989).

    Article  CAS  Google Scholar 

  8. Minotti, G. and Aust, S. D., Lipids 27, 219 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Harris, D. C. and Aisen, P., Biochim. Biophys. Acta 329, 156 (1973).

    PubMed  CAS  Google Scholar 

  10. Ohyashiki, T. and Nunomura, M., Biochim. Biophys. Acta 1484, 241 (2000).

    PubMed  CAS  Google Scholar 

  11. Bakač, A. and Wang, W.-D., Inorg. React. Mech. 1, 65 (1998).

    Google Scholar 

  12. Flyunt, R., Leitzke, A., Mark, G., Mvula, E., Reisz, E., Schick, R., and von Sonntag, C., J. Phys. Chem., B 107, 7242 (2003) and references cited therein.

    Article  CAS  Google Scholar 

  13. Phulkar, S., Rao, B. S. M., Schuchmann, H.-P., and von Sonntag, C., Z. Naturforsch. 45b, 1425 (1990).

    Google Scholar 

  14. Rush, J. D. and Koppenol, W. H., FEBS Lett. 275, 114 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. Mihaljević, B., Katušin-Ražem, B., and Ražem, D., Free Radical Biol. Med. 21, 53 (1996).

    Article  Google Scholar 

  16. Anon., Training Manual on Food Irradiation Technology and Techniques. IAEA Technical Reports Series No. 114. International Atomic Energy Agency, Vienna, 1970.

  17. Mihaljević, B. and Ražem, D., Croat. Chim. Acta 76, 249 (2003).

    Google Scholar 

  18. Biruš, M., Kujundžić, N., and Pribanić, M., Prog. React. Kinet. 18, 171 (1993).

    Google Scholar 

  19. Welch, K. D., Davis, T. Z., and Aust, S. D., Arch. Biochem. Biophys. 397, 360 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. Erben-Russ, M., Michael, C., Bors, W., and Saran, M., J. Phys. Chem. 91, 2362 (1987).

    Article  CAS  Google Scholar 

  21. Mihaljević, B., Medved-Rogina, B., and Ražem, D., Radiat. Phys. Chem. 55, 593 (1999).

    Article  Google Scholar 

  22. Bennett, E., J. Chem. Soc., Faraday Trans. 86, 3247 (1990).

    Article  CAS  Google Scholar 

  23. Walling, C. and Wagner, P., J. Am. Chem. Soc. 85, 2333 (1963).

    Article  CAS  Google Scholar 

  24. Avila, D. V., Brown, C. E., Ingold, K. U., and Lusztyk, J., J. Am. Chem. Soc. 115, 466 (1993).

    Article  CAS  Google Scholar 

  25. Steenken, S. and Neta, P., J. Am. Chem. Soc. 104, 1244 (1982).

    Article  CAS  Google Scholar 

  26. Stevens, G. C., Clarke, R. M., and Hart, E. J., J. Phys. Chem. 76, 3863 (1972).

    Article  CAS  Google Scholar 

  27. Neta, P., Gradkowski, J., and Ross, A. B., J. Phys. Chem. Ref. Data 25, 709 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Walling, C. and Wagner, J. P., J. Am. Chem. Soc. 86, 3368 (1964).

    Article  Google Scholar 

  29. Gilbert, B. C., Marshall, P. D. R., Norman, R. O. C., Pineda, N., and Williams, P. S., J. Chem. Soc., Perkin Trans. 2 1981, 1392.

    Google Scholar 

  30. Reynolds, W. L. and Kolthoff, I. M., J. Phys. Chem. 60, 969 (1956).

    Article  CAS  Google Scholar 

  31. Aoshima, H. and Taniguchi, H., Anal. Lett. 16A, 301 (1983).

    Google Scholar 

  32. Rush, J. D., Maskos, Z., and Koppenol, W. H., FEBS Lett. 261, 121 (1990).

    Article  CAS  Google Scholar 

  33. Rush, J. D. and Koppenol, W. H., J. Am. Chem. Soc. 110, 4957 (1988).

    Article  CAS  Google Scholar 

  34. Rahhal, S. and Richter, H. W., J. Am. Chem. Soc. 110, 3126 (1988).

    Article  CAS  Google Scholar 

  35. Chen, H., Lee, D. J., and Schanus, E. G., Lipids 27, 234 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. Asmus, K.-D., Moeckel, H., and Henglein, A., J. Phys. Chem. 77, 1218 (1973).

    Article  CAS  Google Scholar 

  37. Burchill, C. E. and Ginns, I. S., Can. J. Chem. 48, 2628 (1970).

    Article  Google Scholar 

  38. Kochi, J. K., in Free Radicals, Vol. 1, pp. 591–683. Wiley-Interscience, New York, 1973.

    Google Scholar 

  39. Ellis, K. J. and Laurence, G. S., Trans. Faraday Soc. 63, 91 (1967).

    Article  CAS  Google Scholar 

  40. Lati, J. and Meyerstein, D., J. Chem. Soc., Dalton Trans. 1978, 1105.

  41. Tadolini, B., Cabrini, L., Menna, C., Pinna, G. G., and Hakim, G., Free Radical Res. 27, 563 (1997).

    CAS  Google Scholar 

  42. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 5th Edition. Interscience Publishers, Wiley & Sons, New York, 1988.

    Google Scholar 

  43. Wilkins, R. G., Kinetics and Mechanism of Reactions of Transition Metal Complexes. Allyn and Bacon, Boston, 1991.

    Google Scholar 

  44. Previtali, C. M., Pure Appl. Chem. 67, 127 (1995).

    CAS  Google Scholar 

  45. Hiatt, R. and Traylor, T. G., J. Am. Chem. Soc. 87, 3766 (1965).

    Article  CAS  Google Scholar 

  46. Traylor, T. G. and Ciccone, J. P., J. Am. Chem. Soc. 111, 8413 (1989).

    Article  CAS  Google Scholar 

  47. Buettner, G. R., Arch. Biochem. Biophys. 300, 535 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. Koppenol, W. H., FEBS Lett. 264, 165 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. Meyer, F. K., Monnerat, A. R., Newman, K., and Merbach, A. E., Inorg. Chem. 21, 774 (1982).

    Article  CAS  Google Scholar 

  50. Rorabacher, D. B., Inorg. Chem. 5, 1891 (1966).

    Article  CAS  Google Scholar 

  51. Hanlon, M. C. and Seybert, D. W., Free Radical Biol. Med. 23, 712 (1997).

    Article  CAS  Google Scholar 

  52. Wills, E. D., Biochem. J. 99, 667 (1966).

    PubMed  CAS  Google Scholar 

  53. Tang, L., Zhang, Y., Qian, Z., and Shen, X., Biochem. J. 352, 27 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaljević, B., Ražem, D. Influence of medium on the kinetics of oxidation of iron(II) ion with t-butyl hydroperoxide. Chem. Pap. 60, 253–267 (2006). https://doi.org/10.2478/s11696-006-0045-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-006-0045-5

Keywords

Navigation