Skip to main content
Log in

The β-carotene dilemma: ESR study with coordinated peroxyl radicals

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The apparently unpredictable behaviour of β-carotene in the supplementation of the diet of smokers is discussed in the light of the reactions of peroxyl radicals with β-carotene in the absence of oxygen. The decay of tert-butylperoxyl radicals in the presence of β-carotene was studied at ambient temperature in non-polar solvents by ESR spectroscopy. The primary reaction in the absence of oxygen is interpreted as a spin-trapping effect of a peroxyl radical by β-carotene producing an intermediate labile free radical, which disappears after recombination with a second tert-butylperoxyl radical. The result is the transformation of β-carotene to a diamagnetic compound with two peroxy bonds. In the presence of chelating transition metals with unpaired d-electrons as electron donors the peroxy group of the oxidized β-carotene can be split to alkoxyl free radicals. The primary attack of tert-butylperoxyl radicals is completely inhibited in the presence of vitamin E followed by production of free aryloxy radicals and the presence of oxygen has no significant effect on this reaction. Spin-trapping of peroxyl radicals by the double bond of vitamin A leads to its oxidation in the absence of vitamin E.

Transition metal ions such as Co, Cr, Fe, and Mn, known to be present in the aerosol of cigarette smoke, homolyse the peroxyl bonds of peroxidised β-carotene, which results in cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott, G., Antioxidants in Science, Technology, Medicine and Nutrition, Chapter 5, Antioxidants in Biology, pp. 215–219. Albion Chemical Science Series, Chichester, 1997.

    Google Scholar 

  2. Gey, K. F., Nutr. Biochem. 6, 206 (1995).

    Article  CAS  Google Scholar 

  3. Bolton-Smith, C., Casey, C. E., Gey, K. F., Smith, W. C. F., and Tunstall-Pedoe, H., Brit. J. Nutr. 65, 337 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. Scott, G., Antioxidants in Science, Technology, Medicine and Nutrition, Chapter 6, Antioxidants in Disease and Oxidative Stress. Albion Chemical Science Series, Chichester, 1997.

    Google Scholar 

  5. Ames, B. N., Science, 221, 1256 (1983).

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Duthie, S. J., Ross, M. A., and Collins, A. R., Cancer Res. 56, 1291 (1996).

    PubMed  CAS  Google Scholar 

  7. Stryker, W. C., Kaplan, L. A., Stein, E. A., Stampfer, M. J., Sobner, A., and Willett, W. C., Am. J. Epidemiol. 127, 283 (1988).

    PubMed  CAS  Google Scholar 

  8. Tkáč, A. and Hanušovská-Tkáčová, E., J. Prakt. Chem. 331, 931 (1989).

    Article  Google Scholar 

  9. Tkáč, A. and Hanušovská-Tkáčová, E., Organic Free Radicals. (Fischer, H. and Heimgartner, H., Editors.) P. 211. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  10. Burton, G. W. and Ingold, K. U., Science 224, 569 (1984).

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Scott, G., Autooxidation and Antiaxidants: Historical Perspective in Atmospheric Oxidation and Antioxidants, Vol. II, p. 11–14. (Scott, G., Editor.) Elsevier, Amsterdam, 1993.

    Google Scholar 

  12. Scott, G., Antioxidants in Science, Technology, Medicine and Nutrition, p. 11, 215 et seq. Albion Chemical Science Series, Chichester, 1997.

    Google Scholar 

  13. Mortensen, A. and Skibsted, L. H., Free Rad. Res. 25, 515 (1996).

    Article  CAS  Google Scholar 

  14. Valgimigli, L., Sucarini, M., Pedulli, G. F., and Ingold, K., J. Am. Chem. Soc. 119, 8095 (1997).

    Article  CAS  Google Scholar 

  15. Tkáč, A., Veselý, K., and Omelka, L., J. Phys. Chem. 75, 2575 (1971).

    Article  Google Scholar 

  16. Tkáč, A., Veselý, K., and Omelka, L., J. Phys. Chem. 75, 2580 (1971).

    Article  Google Scholar 

  17. Tkáč, A., Int. J. Radiat. Phys. Chem. 7, 457 (1975).

    Article  Google Scholar 

  18. Tkáč, A., in Developments in Polymer Stabilisation — 8. (Scott, G., Editor.) Pp. 61–178. Elsevier Applied Science, London, 1987.

    Google Scholar 

  19. Tkáč, A., Developments in Polymer Stabilisation — 5. (Scott, G., Editor.) Pp. 153–231. Applied Science Publishers, England, 1982.

    Google Scholar 

  20. Tkáč, A. and Bilton, R. F., Polym. Deg. Stab. 34, 69 (1991).

    Google Scholar 

  21. Tkáč, A. and Bahna, L., Neoplasma 29, 497 (1982).

    PubMed  Google Scholar 

  22. Krivan, V., Schneider, G., Baumann, H., and Reus, U., Fresenius J. Anal. Chem. 348, 218 (1994).

    Article  CAS  Google Scholar 

  23. Schneider, G. and Krivan, V., Anal. Chem. 53, 87 (1993).

    CAS  Google Scholar 

  24. Palozza, P., Calviello, G., Serini, S., Maggiano, N., Lanza, P., Ranelletti, F. O., and Bartoli, G. M., Free Rad. Biol. Med. 30, 1000 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Paolini, M., Cantelli-Forti, G., Perocco, P., Pedulli, G. F., Abdel-Rahman, S. Z., and Legator, M. S., Nature 398, 760 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkáč, A., Scott, G. The β-carotene dilemma: ESR study with coordinated peroxyl radicals. Chem. Pap. 60, 179–185 (2006). https://doi.org/10.2478/s11696-006-0033-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-006-0033-9

Keywords

Navigation