Skip to main content
Log in

Investigation of the solid samples evaporation from the auxiliary DC arc discharge in the atomic emission spectroscopy

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Efficiency of the suggested tandem technique of Marinković burner was studied in terms of the influence of the PC-controlled DC arc of the different intensities (10 A, 15 A, 20 A, 25 A) on the evaporation process. Higher intensities than 25 A did not allow to use the given experimental equipment since they cause plasma instability and periodic plasma quenching. The suggested method was evaluated by the determination of the half (t 50%) and total (t 100%) evaporation time and by determination of the signal/background ratio for the chosen elements (Al, Ca, Cr, Fe, Mg, Ni, Si, and V) in the model graphite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caroli, S., Sample Introduction in Atomic Spectroscopy, p. 225. Elsevier, Amsterdam, 1990.

    Google Scholar 

  2. Kántor, T., Spectrochim. Acta, Part B 56, 1523 (2001).

    Article  Google Scholar 

  3. Marinković, M. and Antonijević, V. G., Spectrochim. Acta, Part B 35, 129 (1980).

    Article  ADS  Google Scholar 

  4. Ružičková, S., Jankovská, E., Koller, L., and Matherny, M., Trans. Uni. Košice 1, 13 (2003).

    Google Scholar 

  5. Ružičková, S., Jankovská, E., Koller, L., and Matherny, M., Chem. Pap. 57, 204 (2003).

    Google Scholar 

  6. Koller, L. and Matherny, M., Magy. Kem. Foly. 108, 79 (2002).

    CAS  Google Scholar 

  7. Vainstein, E. E. and Belayev, Yu. I., Int. J. Radiat. Isotopes 4, 179 (1959).

    Article  Google Scholar 

  8. Rubeška, I., Collect. Czech. Chem. Commun. 30, 1202 (1965).

    Google Scholar 

  9. Kántor, T., Fodor, P., Youssef, Y. S., and Pungor, E., Hung. Sci. Instruments 36, 19 (1976).

    Google Scholar 

  10. Kántor, T., Fodor, P., and Pungor, E., Anal. Chim. Acta 102, 15 (1978).

    Article  Google Scholar 

  11. Perzel, P. R., Direct-Current Arc DCA 301. Product information. No. 96/5.

  12. Plško, E., Pure Appl. Chem. 48, 69 (1976).

    Google Scholar 

  13. Kántor, T. and Pungor, E., Spectrochim. Acta, Part B 29, 139 (1974).

    Article  Google Scholar 

  14. Ružičková, S., Koller, L., and Matherny, M., Trans. Uni. Košice 2, 59 (2004).

    Google Scholar 

  15. Möller, H., Mazurkiewicz, H., and Nickel, H., KFA, Juel-Report, 1449 (1977).

  16. Nickel, H., Spectrochim. Acta 21, 363 (1960).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented at the 6th European Furnace Symposium and 11th Solid Sampling Colloquium at Balatonfödlvár, Hungary, June 27–30, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ružičková, S., Koller, L. & Matherny, M. Investigation of the solid samples evaporation from the auxiliary DC arc discharge in the atomic emission spectroscopy. Chem. Pap. 60, 116–121 (2006). https://doi.org/10.2478/s11696-006-0021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-006-0021-0

Keywords

Navigation