Skip to main content

Advertisement

Log in

Nitrous oxide emissions from waste incineration

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

EU energy and environmental policy in waste management leads to increasing interest in developing methods for waste disposal with minimum emissions of greenhouse gases and minimum environmental impacts.

From the point of view of nitrous oxide (N2O) emissions, waste incineration and waste co-combustion is very acceptable method of waste disposal. Two factors are important for attaining very low N2O emissions from waste incineration, particularly for waste with higher nitrogen content (e.g. sewage sludge, leather, etc.): temperature of incineration over 900°C and avoiding selective noncatalytic reduction (SNCR) de-NOx method based on urea. For reduction of N2O emissions retrofitting such plants to ammonia-based SNCR is recommendable. The modern selective catalytic reduction facilities for de-NOx at waste incineration plants are only negligible source of N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroeze, C., Nitrous oxide (N2O) emissions inventory and options for control in the Netherlands. The National Institute of Public Health and Environmental Protection Bilthoven, Report Nr. 773001004, 1994.

  2. Gale, J., Sankovski, A., and Crook, L., Abatement of emissions of other greenhouse gases. Nitrous Oxide. GHGT-5 Greenhouse Gas Control Technologies Conference, IEA GHG, 13–16 August 2000, Cairns, Australia.

  3. Olivier, J. G. J., Bouwman, A. F., Van der Hoek, K. W., and Berdowski, J. J. M., Environ. Pollut. 102,S1, 135 (1998).

    Article  CAS  Google Scholar 

  4. AEAT, 1998. Options to Reduce Nitrous Oxide Emissions (Final report), AEAT-4180: Issue 3, Produced for DG XI.

  5. Orthofer, R., Knoflacher, H. M., and Zueger, J., Energy Conversion Manage. 37, 1309 (1996).

    Article  CAS  Google Scholar 

  6. Olivier, J. G. J., Bouwman, A. F., Berdowski, J. J. M., Veldt, C., Bloss, J. P. J., Visschedijk, A. J. H., van der Mass, C. W. M., and Zandveld, P. Y. J., Environ. Sci. Policy 2, 241 (1999).

    Article  CAS  Google Scholar 

  7. Mosier, A. and Kroeze, C., Chemosphere — Global Change Sci. 2, 465 (2000).

    Article  CAS  Google Scholar 

  8. Skiba, U. and Smith, K. A., Chemosphere — Global Change Sci. 2, 379 (2000).

    Article  CAS  Google Scholar 

  9. Wojtowicz, M. A., Pels, J. R., and Moulijn, J. A., Fuel 73, 1416 (1994).

    Article  CAS  Google Scholar 

  10. Svoboda, K., Čermák, J., and Hartman, M., Chem. Pap. 54, 118 (2000).

    CAS  Google Scholar 

  11. Becker, K. H., Lörzer, J. C., Kurtenbach, R., Wiesen, P., Jensen, T. E., and Wallington, T. J., Chemosphere — Global Change Sci. 2, 387 (2000).

    Article  CAS  Google Scholar 

  12. Bates, J., Brand, C., and Hill, N., Economic evaluation of emissions reductions in the transport sector of the EU. Bottom-up analysis, AEA Technology Environment. Contribution to a Study for DG Environment (2001). http://europa.eu.int/comm/environment/enveco/climate_change/transport_update.pdf

  13. Odaka, M., Koike, N., and Suzuki, H., Chemosphere — Global Change Sci. 2, 413 (2000).

    Article  CAS  Google Scholar 

  14. Kramlich, J. C. and Linak, W. P., Prog. Energy Combust. Sci. 20, 149 (1994).

    Article  CAS  Google Scholar 

  15. Werther, J., Fuel Energy Abstr. 36, 373 (1995).

    Google Scholar 

  16. He, Y., Inamori, Y., Motoyuki, M., Kong, H., Iwami, N., and Sun, T., Sci. Total Environ. 254, 65 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Beck-Friis, B., Smårs, S., Jönsson, H., and Kirchmann, H., J. Agric. Eng. Res. 78, 423 (2001).

    Article  Google Scholar 

  18. Lee, C. M., Lin, X. R., Lan, C. Y., Lo, S. C. L., and Chan, G. Y. S. C., J. Environ. Qual. 31, 1502 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Patumsawad, S. and Cliffe, K. R., Energy Conversion Manage. 43, 2329 (2002).

    Article  CAS  Google Scholar 

  20. Ruth, L. A., Prog. Energy Combust. Sci. 24, 545 (1998).

    Article  CAS  Google Scholar 

  21. Williams, P., Incineration of municipal waste with energy recovery. In Incineration of Municipal Waste. Department of Fuel and Energy, University of Leeds, 2000.

  22. Malkow, T., Waste Manage. 24, 53 (2004).

    Article  CAS  Google Scholar 

  23. Tanikawa, N. and Mori, M., Discharge characteristics of nitrous oxide in waste incineration plants (in Japan). Tokyo-to Seiso Kenkyosho Kenkyu Hokoku, p. 157–159 (1997).

  24. Tanikawa, N., Toshitada, I., and Urano, K., Sci. Total Environ. 175, 189 (1995).

    Article  CAS  Google Scholar 

  25. Johnke, B., Emissions from waste incineration: in Background papers IPPC Expert Meeting on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000). http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf

  26. Olofson, G., Wang, W., Ye, Z., Bjerle, I., and Anderson A., Energy Fuels 16, 915 (2002).

    Article  CAS  Google Scholar 

  27. Svoboda, K., Hartman, M., and Veselý, V., Chem. Listy 88, 13 (1994).

    CAS  Google Scholar 

  28. Tsujimoto, Y., Watanabe, N., and Inoue, S., Effect of reductive NOx abatement techniques on N2O emission at municipal solid waste incineration plants. Annual Report of Osaka City Institute of Public Health and Environmental Sciences 61, 22 (1999).

    Google Scholar 

  29. Qwaak, P., Knoef, H., and Srassen, H., Energy from Biomass. A review of combustion and gasification technologies. World Bank technical paper No. 422, Energy Series, Washington D.C., 1999.

  30. Winter, F., Wartha, C., and Hofbauer, H., Bioresource Technol. 70, 39 (1999).

    Article  CAS  Google Scholar 

  31. Nussbaumer, T., Energy Fuel 17, 1510 (2003).

    Article  CAS  Google Scholar 

  32. Moritomi, H., Shimizu, T., Suzuki, Y., Ninomiya, Y., Naruse, I., Ono, N., and Harada, M., Measurements of N2O emission from commercial scale and bench-scale coal-fired fluidized bed combustors. 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, May 16–19, 1999.

  33. Magoarou, P., Urban waste water in Europe, what about the sludge? In Workshop on Problems around Sludge. (Langenkamp, H. and Marmo, L., Editors.) Stresa (NO) Italy, 18–19. November 1999.

  34. Ludwig, P. and Stamer, F., Reduction in NOx emissions from an industrial sewage incineration plant by employing primary measures in a fluidized bed furnace. 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, May 16–19, 1999.

  35. Sänger, M., Werther, J., and Ogada, T., Fuel 80, 167 (2001).

    Article  Google Scholar 

  36. Werther, J. and Ogada, T., Prog. Energy Combust. Sci. 25, 55 (1999).

    Article  CAS  Google Scholar 

  37. Werther, J., Ogada, T., and Philippek, C., J. Inst. Energy 68, 93 (1995).

    CAS  Google Scholar 

  38. Conesa, J. A., Fullana, A., and Font, R., J. Anal. Appl. Pyrolysis 70, 619 (2003).

    Article  CAS  Google Scholar 

  39. Bahillo, A., Armesto, L., Cabanillas, A., and Otero, J., NOx and N2O emissions during fluidized bed combustion of leather wastes. Proceedings of the 17th International Conference on Fluidized Bed Combustion, Jacksonville, Florida, USA, May 18–21, 2003.

  40. Svärd, S. H., Kullendorff, A., Virta, L., Backman, S., Tilly, H.-A., and Sterngård, E., Co-combustion of animal waste in fluidized bed boilers — Operating experiences and emissions data. 17th International Conference on Fluidized Bed Combustion, Jacksonville, Florida, USA, May 18–21, 2003.

  41. Zevenhoven, R., Axelsen, E. P., Kilpinen, P., and Huppa, M., Nitrogen oxides from nitrogen-containing waste fuels at FBC conditions — Part 1. 39th IEA FBC Meeting, Madrid, Spain, 22–24 November 1999.

  42. Dong, Ch., Jin, B., Zhong, Z., and Lan, J., Energy Conversion Manage. 43, 2189 (2002).

    Article  CAS  Google Scholar 

  43. Desroches-Ducarne, E., Marty, E., Martin, G., and Delfosse, L., Fuel 77, 1311 (1998).

    Article  CAS  Google Scholar 

  44. Spliethoff, H. and Hein, K. R. G., Fuel Process. Technol. 54, 189 (1998).

    Article  CAS  Google Scholar 

  45. Werther, J., Sänger, M., Hartge, E. U., Ogada, T., and Siagi, Z., Prog. Energy Combust. Sci. 26, 1 (2000).

    Article  CAS  Google Scholar 

  46. Amand, L. E., Miettinen-Westberg, H., Karlsson, M., Leckner, B., Luecke, K., Budinger, S., Hartge, E. U., and Werther, J., Co-combustion of dried sewage sludge and coal/wood in CFB — a search for factors influencing emissions. 16th International Conference on Fluidized Bed Combustion, Reno, USA, May 13–16, 2001.

  47. Liu, D. Ch., Wang, J. H., Chen, H. P., Zhang, S. H., Huang, L., and Lu, J. D., Emission control of N2O by co-combustion of coal and biomass and narrow pulse corona discharge. 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, May 16–19, 1999.

  48. Boavida, D., Abelha, P., Gulyurtlu, I., and Cabrita, I., Fuel 82, 1931 (2003).

    Article  CAS  Google Scholar 

  49. Shen, B. X., Mi, T., Liu, D. C., Feng, B., Yao, Q., and Winter, F., Fuel Process. Technol. 84, 12 (2003).

    Google Scholar 

  50. Hein, K. R. G. and Bemtgen, J. M., Fuel Process. Technol. 54, 159 (1998).

    Article  CAS  Google Scholar 

  51. Liu, D. C., Mi, T., Shen, B. X., Feng, B., and Winter, F., Energy Fuels 16, 525 (2002).

    Article  CAS  Google Scholar 

  52. Suksankraisorn, K., Patumsawad, S., and Funtammasan, B., Waste Manage. 23, 433 (2003).

    Article  CAS  Google Scholar 

  53. Svoboda, K., Pohořelý, M., and Hartman, M., Energy Fuels 17, 1091 (2003).

    Article  CAS  Google Scholar 

  54. Knöbig, T., Werther, J., Amand, L. E., and Leckner, B., Fuel 77, 1635 (1998).

    Article  Google Scholar 

  55. Zhong, Z., Jin, B., Lan, J., Dong, Ch., and Zhou, H., Experimental study of municipal solid waste (MSW) incineration and its flue gas purification. 17th International Conference on Fluidized Bed Combustion, Jacksonville, Florida, USA, May 18–21, 2003.

  56. Nottrodt, A., Wandschneider, J., Gutjahr, M., and Chibiorz, J., Technical Requirements and General Recommendations for the Disposal of Meat and Bone Meal and Tallow. Umweltbundesamt, UFOPLAN-Ref. No. 20033336 (2001). http://www.umweltdaten.de/down-e/meal.pdf

  57. Philippek, C. and Werther, J., J. Inst. Energy 70, 141 (1997).

    CAS  Google Scholar 

  58. Tzimas, E. and Peteves, S. D., NOx and dioxin emissions from waste incineration plants. Energy technology observatory, Institute for Energy, EUR 20114 EN (2002).

  59. Caton, J., Narney, J. K., Cariappa, H. C., and Laster, W. R., Can. J. Chem. Eng. 73, 345 (1995).

    Article  CAS  Google Scholar 

  60. Kasuya, F., Glarborg, P., Johnsson, J. E., and Dam-Johansen, K., Chem. Eng. Sci. 50, 1455 (1995).

    Article  CAS  Google Scholar 

  61. Brouwer, J., Heap, M. P., Pershing, D. W., and Smith, P. J., A model for prediction of SNCR of NOx by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO. 26th International Symposium on Combustion, Naples, Italy, July 1996.

  62. Furrer, J., Deuber, H., Hunsinger, H., Kreisz, S., Linek, A., Seifert, H., Soehr, J., Ishikawa, R., and Watanabe, K., Waste Manage. 18, 417 (1998).

    Article  CAS  Google Scholar 

  63. Koebel, M., Madia, G., and Elsener, M., Catal. Today 73, 239 (2002).

    Article  CAS  Google Scholar 

  64. Koebel, M., Elsener, M., and Madia, G., Ind. Eng. Chem. Res. 40, 52 (2001).

    Article  CAS  Google Scholar 

  65. Madia, G., Koebel, M., Elsener, M., and Wokaun, A., Ind. Eng. Chem. Res. 41, 4008 (2002).

    Article  CAS  Google Scholar 

  66. Madia, G., Elsener, M., Koebel, M., Raimondi, F., and Wokaun, A., Appl. Catal., B 39, 181 (2002).

    Article  CAS  Google Scholar 

  67. Suarez, S., Jung, S. M., Avila, P., Grange, P., and Blanco, J., Catal. Today 75, 331 (2002).

    Article  CAS  Google Scholar 

  68. Udron, L., Hackel, M., and Turek, T., Catalysis of reduction and oxidation reactions for application in gas particle filters. 5th International Symposium on Gas Cleaning at High Temperatures, Morgantown, USA, September 2002.

  69. Qi, G. and Yang, R. T., Appl. Catal., B 44, 217 (2003).

    Article  CAS  Google Scholar 

  70. Qi, G. and Yang, R. T., J. Catal. 217, 434 (2003).

    CAS  Google Scholar 

  71. Teng, H., Hsu, L. Y., and Lay, Y. Ch., Environ. Sci. Technol. 35, 2369 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. Van den Brink, R. W., Booneveld, S., Verhaak, M. J. F. M., and de Bruijn, F. A., Catal. Today 75, 227 (2002).

    Article  Google Scholar 

  73. Pels, J. R. and Verhaak, J. F. M., Selective catalytic reduction of N2O with hydrocarbons using a SO2 resistant Fe/zeolite catalyst. In Non-CO2 Greenhouse Gases, Scientific Understanding, Control and Implementation. (J. van Ham et al., Editors.) P. 359–364. Kluwer Academic Publishers, Duivendrecht, The Netherlands, 2000.

    Google Scholar 

  74. Schay, Z., Gucsi, L., Beck, A., and Nagy, I., Catal. Today 75, 393 (2002).

    Article  CAS  Google Scholar 

  75. Stoehr, J., Bechtler, R., Furrer, J., and Seifert, H., Waste Manage. 18, 411 (1998).

    Article  Google Scholar 

  76. Jones, J. and Ross, J. R. H., Catal. Today 35, 97 (1997).

    Article  CAS  Google Scholar 

  77. Goemans, M., Clarysse, P., Joannes, J., De Clercq, P., Lenaerts, S., Matthys, K., and Boels, K., Chemosphere 50, 489 (2003).

    Article  PubMed  CAS  Google Scholar 

  78. Bonte, J. L., Fritsky, K. J., Plinke, M. A., and Wilken, M., Waste Manage. 22, 421 (2002).

    Article  CAS  Google Scholar 

  79. Schaub, G., Unruh, D., Wang, J., and Turek, T., Chem. Eng. Process. 42, 365 (2003).

    Article  CAS  Google Scholar 

  80. Cramer, H. and Frey, R., Umweltmagazin 1/2, 48 (2001).

    Google Scholar 

  81. Mogami, Y., Fritsky, K. J., Bucher, R., Kurtz, E., Wilken, M., and Shono, K., Experience in Batch and Continuous Municipal Waste Incinerators in Japan. 21st International Symposium on Halogenated Environmental Organic Pollutants and POPs, Gyeongju, Korea, September 9–14, 2001.

  82. Cramer, H. and Frey, R., Der Von Roll 4D-Filter — Kombination von Katalysator, Filter und Trockensorption. VDI Seminar BW 43-59-11 “BAT-und preisorientierte Dioxin/Gesamtemissionsminderungstechniken”, München, Germany, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, K., Baxter, D. & Martinec, J. Nitrous oxide emissions from waste incineration. Chem. Pap. 60, 78–90 (2006). https://doi.org/10.2478/s11696-006-0016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-006-0016-x

Keywords

Navigation