Skip to main content
Log in

Transport velocities of different particulate materials in pneumatic conveying

  • Preliminary Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Particle horizontal transport and vertical entrainment of widely different materials (silica sand, alumina, ceramsite, dry sludge, and wood shreds) are explored by experimental measurements. Experiments have been performed with two very narrow fractions of solids (0.315–0.50 mm and 1.4–1.6 mm) on a laboratory setup. Simple empirical correlations are proposed in terms of the Reynolds and Archimedes criteria for the commencement of the horizontal conveying as well as the vertical entrainment of particles in pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ƌ p :

mean particle size determined by sieving. m, mm

g:

acceleration due to gravity ( = 9.807 m s−2)

log:

denotes base-ten or Briggsian logarithm

P:

pressure. kPa

T:

thermodynamic temperature. K

U t :

minimum superficial velocity of a gas stream at which particles are entrained upwards. m s−1

U tr :

minimum superficial velocity of a gas stream needed to transport (pickup) solid particles through a horizontal tube m s−1

µf :

fluid (air) viscosity. kg (m s)−1, Pa s

ρ f :

fluid (air) density. kg m−3

ρ p :

particle density kg. m−3

Ar:

Archimedes number ( = ƌ 3p f(ρ pρ f)/μ 2f )

Re t :

Reynolds number at gas velocity when particles are just entrained upwards ( = U t ƌ p ρ f/μ f)

Re tr :

Reynolds number at minimum gas velocity needed to transport (pickup) particles through horizontal pipe ( = U tr ƌ p ρ f/μ f)

References

  1. Hartman, M., Svoboda, K., and Trnka, O., Ind. Eng. Chem. Res. 30, 1855 (1991).

    Article  CAS  Google Scholar 

  2. Pohořelý, M., Svoboda, K., and Hartman, M., Powder Technol. 142, 1 (2004).

    Article  Google Scholar 

  3. Pohořelý, M., Svoboda, K., and Hartman, M., Chem. Listy 98, 361 (2004).

    Google Scholar 

  4. Yates, J. G. and Simons, S. J. R., Int. J. Multiphase Flow 20(Suppl.), 297 (1994).

    Article  CAS  Google Scholar 

  5. Werther, J., Powder Technol. 102, 15 (1999).

    Article  CAS  Google Scholar 

  6. Cabrejos, F. J. and Klincing, G. E., Powder Technol. 72, 51 (1992).

    Article  CAS  Google Scholar 

  7. Cabrejos, F. J. and Klincing, G. E., Powder Technol. 79, 173 (1994).

    Article  CAS  Google Scholar 

  8. Hayden, K. S., Park, K., and Curtis, J. S., Powder Technol. 131, 7 (2003).

    Article  CAS  Google Scholar 

  9. Hubert, M. and Kalman, H., Powder Technol. 134, 156 (2003).

    Article  CAS  Google Scholar 

  10. Hartman, M., Trnka, O., and Svoboda, K., Chem. Eng. Sci. 55, 6269 (2000).

    Article  CAS  Google Scholar 

  11. Hartman, M., Trnka, O., and Svoboda, K., Ind. Eng. Chem. Res. 33, 1979 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hartman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, M., Phořelý, M. & Trnka, O. Transport velocities of different particulate materials in pneumatic conveying. Chem. Pap. 60, 74–77 (2006). https://doi.org/10.2478/s11696-006-0015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-006-0015-y

Keywords

Navigation