The impact of red and blue light-emitting diode illumination on radish physiological indices

Abstract

The objective was to evaluate the effect of different combinations of red (638 nm) and blue (455 nm) light produced by solid-state light-emitting diodes (LEDs) on physiological indices (net assimilation rate, hypocotyl-to-leaf ratio, leaf area, leaf dry weight, hypocotyl length and diameter, plant length, developed leaves), variation of photosynthetic pigments and non-structural carbohydrates in radish (Raphanus sativus L., var. ‘Faraon’). Lighting experiments were performed under controlled conditions (total PPFD - 200 μmol m−2 s−1; 16 h photoperiod; 14/18°C night/day temperature). The LED conditions: 638 nm; 638 + 5% 455 nm; 638 + 10% 455 nm; 638 + 10% 455 + 731 nm; 638 + 10% 455 + 731 + 669 nm. Our results showed that radishes grown under red (638 nm) alone were elongated, and the formation of hypocotyl was weak. The net assimilation rate, hypocotyl-to-leaf ratio, and leaf dry weight also were low due to the low accumulation of photosynthetic pigments and non-structural carbohydrates in leaves. The supplemented blue (455 nm) light was necessary for the non-structural carbohydrates distribution between radish storage organs and leaves which resulted in hypocotyl thickening. Red alone (638 nm) or in combination with far-red (731 nm), or red669 for radish generative development was required.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Yorio N.C., Goins G.D., Kagie H.R., Wheeler R.M., Sager J.C., Goins G.D., Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation, HortSci., 2001,. 36, 380–383

    CAS  Google Scholar 

  2. [2]

    Goins G.D., Yorio N.C., Sanwo M.M., Brown C.S., Sager J.C., Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting, J. Exp. Bot., 1997, 48, 1407–1413

    PubMed  Article  CAS  Google Scholar 

  3. [3]

    Folta K.M., Childers K.S., Light as a Growth Regulator: Controlling plant biology with narrowbandwidth solid-state lighting systems, HortSci., 2008, 43, 1957–1964

    Google Scholar 

  4. [4]

    Ballaré C.L., Casal J.J., Light signals perceived by crop and weed plants, Field Crop Res., 2000, 67, 149–160

    Article  Google Scholar 

  5. [5]

    Wheeler R.M., A historical background pf plant lighting: an introduction to the workshop, HortSci., 2008, 43, 1942–1943

    Google Scholar 

  6. [6]

    Bourget C.M., An introduction to light-emitting diodes, HortSci., 2008, 43, 1944–1946

    Google Scholar 

  7. [7]

    Morrow R.C., LED lighting in horticulture, HortSci., 2008, 43, 1947–1950

    Google Scholar 

  8. [8]

    Hogewoning S.W., Trouwborst G., Maljaars H., Pooter H., van Ieperen W., Harbinson J., Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light, J. Exp. Bot., 2010, 61, 3107–3117

    PubMed  Article  CAS  Google Scholar 

  9. [9]

    Lee S.-H., Tewari R.K., Hahn E.-J., Peak K.-Y., Photon flux density and light quality induces changes in growth, stomatal development, photosynthesis and transpiration of Withania Somfifera (L.) Duanl., plantlets, Plant Cell Tiss. Organ Cult., 2007, 90, 141–151

    Article  CAS  Google Scholar 

  10. [10]

    Matsuda R., Ohasshi-Kaneko K., Fujiwara K., Kurata K., Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance, Soil Sci. Plant Nutr., 2007, 53, 459–465

    Article  CAS  Google Scholar 

  11. [11]

    Cervalho R.F., Takaki M., Azevedo R.A., Plant pigments: the many faces of light perception, Acta Physiol. Plant, 2011, 33, 241–248

    Article  Google Scholar 

  12. [12]

    Dougher T.A.O., Bugbee B., Differences in the response of wheat, soybean and lettuce to reduced blue radiation,. Photohem. Photobiol., 2001, 73, 199–207

    Article  CAS  Google Scholar 

  13. [13]

    Paul M.J., Foyer C.H., Sink regulation of photosynthesis, J. Exp. Bot., 2001, 52, 1383–1400

    PubMed  Article  CAS  Google Scholar 

  14. [14]

    Williams P.H., Hill C.B., Rapid-cycling populations of Brassica, Science, 1986, 232, 1385–1389

    PubMed  Article  CAS  Google Scholar 

  15. [15]

    Bliznikas Z., Breivė K., Novičkovas A., Vitta P., Žukauskas A., Duchovskis P., Solid-state lamp for the improvement of nutritional quality of leafy vegetables, Electron. Electr. Eng., 2009, 8, 47–50

    Google Scholar 

  16. [16]

    Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), ICH, 2005, http://www.ich.org/LOB/media/MEDIA417.pdf

  17. [17]

    Gavrilenko V.F., Zigalova T.V., Practice in photosynthesis, Moscow, 2003

  18. [18]

    Valvarde F., Mouradov A., Soppe W., Ravenscroft D., Samach A., Coupland G., Photoreceptor regulation of CONSTANS protein in photoperiodic flowering, Sci., 2004, 303, 1003–1006

    Article  Google Scholar 

  19. [19]

    Franklin K.A., Whiteman G.C., Phytochromes and shade-avoidance responses in plants, Ann. Bot., 2005, 96, 169–175

    PubMed  Article  CAS  Google Scholar 

  20. [20]

    Parks B.M., Folta K.M., Spalding E.P., Photocontrol of stem growth, Curr. Opin. Plant Biol., 2001, 4, 436–440

    PubMed  Article  CAS  Google Scholar 

  21. [21]

    Dillard C.M., Eldemire A.M., Monje O.A., Sager J.C., Comparison of spectral combinations of light emitting diodes for crop production, Am. Soc. Agric. Biol. Eng., 2008, e083894

  22. [22]

    Derby N.E., Casey F.X.M., Knighton R.E., Steel D.D., Midseason nitrogen fertility management for corn based on weather and yield prediction, Agron. J., 2004, 96, 494–501

    Article  Google Scholar 

  23. [23]

    Folta K.M., Lawrence L.K., McMorrow R., Kim H.-H., Kenitz J.D., Wheeler R., Sager J.C., Design and fabrication of adjustable red-green-blue LED light arrays for plant research, Plant Biol., 2005, 5, 17

    Google Scholar 

  24. [24]

    Harris G.C., Gibbs P.B., Ludwig G., Un A., Sprengnether M., Kolodny N., Mannose metabolism in corn and its impact on leaf metabolites, photosynthetic gas exchange, and chlorophyll fluorescence, Plant Physiol., 1986, 82, 1081–1089

    PubMed  Article  CAS  Google Scholar 

  25. [25]

    Nishizawa-Yokoi A., Yabuta Y., Shigeoka S., The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage, Plant Signal Behav., 2008, 3, 1016–1018

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giedrė Samuolienė.

About this article

Cite this article

Samuolienė, G., Sirtautas, R., Brazaitytė, A. et al. The impact of red and blue light-emitting diode illumination on radish physiological indices. cent.eur.j.biol. 6, 821 (2011). https://doi.org/10.2478/s11535-011-0059-z

Download citation

Keywords

  • Carbohydrates
  • Chlorophyll
  • Hypocotyl
  • Leaf dry weigh
  • Root:shoot ratio