Skip to main content

Fractional-order TV-L2 model for image denoising

Abstract

This paper proposes a new fractional order total variation (TV) denoising method, which provides a much more elegant and effective way of treating problems of the algorithm implementation, ill-posed inverse, regularization parameter selection and blocky effect. Two fractional order TV-L2 models are constructed for image denoising. The majorization-minimization (MM) algorithm is used to decompose these two complex fractional TV optimization problems into a set of linear optimization problems which can be solved by the conjugate gradient algorithm. The final adaptive numerical procedure is given. Finally, we report experimental results which show that the proposed methodology avoids the blocky effect and achieves state-of-the-art performance. In addition, two medical image processing experiments are presented to demonstrate the validity of the proposed methodology.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L. Ruding, S. Osher, E. Fatemi, Physica D 60, 259 (1992)

    ADS  Article  Google Scholar 

  2. [2]

    J. F. Aujol, J. Math. Imaging Vis. 34, 307 (2009)

    Article  MathSciNet  Google Scholar 

  3. [3]

    C. Vogel, M. Oman, IEEE T. Image Process. 7, 813 (1998)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    F. Alter, S. Durand, J. Froment, J. Math. Imaging Vis. 23, 199 (2005)

    Article  MathSciNet  Google Scholar 

  5. [5]

    F. Li, C. Shen, C. Li, J. Math. Imaging Vis. 37, 98 (2010)

    Article  MathSciNet  Google Scholar 

  6. [6]

    J. Zhang, Z. Wei, L. Xiao, J. Math. Imaging Vis. 43, 39 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]

    Y. L. You, M. Kaveh, IEEE T. Image Process. 9, 1723 (2000)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    M. Hajiaboli, IPSJ Transactions on Computer Vision and Application 2, 94 (2010)

    Article  Google Scholar 

  9. [9]

    R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific, New Jersey, 2011)

    Book  Google Scholar 

  10. [10]

    S. C. Liu, S. Chang, IEEE T. Image Process. 6, 1176 (1997)

    ADS  Article  Google Scholar 

  11. [11]

    S. Didas, B. Burgeth, A. Imiya, J. Weickert, Scale Space and PDE Methods in Computer Vision 3459, 13 (2005)

    Article  Google Scholar 

  12. [12]

    B. Ninness, IEEE T. Inf. Theory 44, 32 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. [13]

    I. Petras, D. Sierociuk, I. Podlubny, IEEE T. Signal Proces. 60, 5561 (2012)

    ADS  Article  MathSciNet  Google Scholar 

  14. [14]

    Y. F. Pu, J. L. Zhou, X. Yuan, IEEE T. Image Process. 19, 491 (2010)

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    B. Jian, X. C. Feng, IEEE T. Image Process. 16, 2492 (2007)

    ADS  Article  Google Scholar 

  16. [16]

    P. Guidotti, J. V. Lambers, J. Math. Imaging Vis. 33, 25 (2009)

    Article  MathSciNet  Google Scholar 

  17. [17]

    E. Cuesta, M. Kirane, S. A. Malik, Signal Process. 92, 553 (2012)

    Article  Google Scholar 

  18. [18]

    M. Janev, S. Pilipovic, T. Atanackovic, R. Obradovic, N. Ralevic, Math. Comput. Model. 54, 729 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. [19]

    D. Chen, H. Sheng, Y. Q. Chen, D. Y. Xue, Phil. Trans. R. Soc. A., DOI:10.1098/rsta.2012.0148

  20. [20]

    D. Hunter, K. Lange, The American Statistician 58, 30 (2004)

    Article  MathSciNet  Google Scholar 

  21. [21]

    M. A. T. Figueiredo, J. M. Bioucas-Dias, R. D. Nowak, IEEE T. Image Process. 16, 2980 (2007)

    ADS  Article  MathSciNet  Google Scholar 

  22. [22]

    J. P. Oliveira, J. M. Bioucas-Dias, M. A. T. Figueiredo, Signal Process. 89, 1683 (2009)

    Article  MATH  Google Scholar 

  23. [23]

    I. Podlubny, Fractional Calculus and Applied Analysis 3, 359 (2000)

    MATH  MathSciNet  Google Scholar 

  24. [24]

    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  25. [25]

    P. Perona, J. Malik, IEEE T. Pattern Anal. 12, 629 (1990)

    Article  Google Scholar 

  26. [26]

    S. G. Armato, et al., Med. Phys. 38, 915 (2011)

    Article  Google Scholar 

  27. [27]

    R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd edition (Addison-Wesley, Massachusetts, 1992)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dali Chen.

About this article

Cite this article

Chen, D., Sun, S., Zhang, C. et al. Fractional-order TV-L2 model for image denoising. centr.eur.j.phys. 11, 1414–1422 (2013). https://doi.org/10.2478/s11534-013-0241-1

Download citation

Keywords

  • image denoising
  • fractional calculus
  • total variation
  • majorization-minimization algorithm