Skip to main content
Log in

Fully automated chip-based nanoelectrospray combined with electron transfer dissociation for high throughput top-down proteomics

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Röwer, C. Koy, M. Hecker, T. Reimer, B. Gerber, H.J. Thiesen, M.O. Glocker, J. Am. Soc. Mass Spectrom. 22, 440 (2011)

    Article  Google Scholar 

  2. M.M. Savitski, F. Kjeldsen, M.L. Nielsen, R.A. Zubarev, J. Proteome Res. 6, 2669 (2007)

    Article  CAS  Google Scholar 

  3. A.A. Shvartsburg, A.J. Creese, R.D. Smith, H.J. Cooper, Anal. Chem. 83, 6918 (2011)

    Article  CAS  Google Scholar 

  4. A. Michalski, J. Cox, M. Mann, J. Proteome Res. 10, 1785 (2011)

    Article  CAS  Google Scholar 

  5. A.L. Capriotti, C. Cavaliere, P. Foglia, R. Samperi, A. Laganà, J. Chromatogr. A. 1218, 8760 (2011)

    Article  CAS  Google Scholar 

  6. H. Zhang, W. Cui, J. Wen, R.E. Blankenship, M.L. Gross, Anal. Chem. 83, 15598 (2011)

    Google Scholar 

  7. W. Cui, H.W. Rohrs, M.L. Gross, Analyst 136, 3854 (2011)

    Article  CAS  Google Scholar 

  8. F.H. Cederkvist, A.D. Zamfir, S. Bahrke, V.G.H. Eijsink, M. Sørlie, J. Peter-Katalinić, M.G. Peter, Angew. Chem. Int. Ed. Engl. 45, 2429 (2006)

    Article  CAS  Google Scholar 

  9. S. Yin, J.A. Loo, Int. J. Mass Spectrom. 300, 118 (2011)

    Article  CAS  Google Scholar 

  10. R.A. Zubarev, D.M. Horn, E.K. Fridriksson, N.L. Kelleher, N.A. Kruger, M.A. Lewis, B.K. Carpenter, F.W. McLafferty, Anal. Chem. 72, 563 (2000)

    Article  CAS  Google Scholar 

  11. K. Breuker, H. Oh, C. Lin, B.K. Carpenter, F.W. McLafferty, Proc. Natl. Acad. Sci. USA 101, 14011 (2004)

    Article  CAS  Google Scholar 

  12. K. Breuker, F.W. McLafferty, Angew. Chem. Int. Ed. Engl. 44, 4911 (2005)

    Article  CAS  Google Scholar 

  13. S. Wu, N. Tolić, Z. Tian, E.W. Robinson, L. Paša-Tolić, Methods Mol. Biol. 694, 291 (2011)

    Article  CAS  Google Scholar 

  14. D. Calligaris, C. Villard, D. Lafitte, J. Proteomics 74, 920 (2011)

    Article  CAS  Google Scholar 

  15. Z. Darula, R.J. Chalkley, A. Lynn, P.R. Baker, K.F. Medzihradszky, Amino Acids 41, 321 (2011)

    Article  CAS  Google Scholar 

  16. N.P. Sargaeva, C. Lin, P.B.J. O’Connor, J. Am. Soc. Mass Spectrom. 22, 480 (2011)

    Article  CAS  Google Scholar 

  17. H. Hahne, B. Kuster, J. Am. Soc. Mass Spectrom. 22, 931 (2011)

    Article  CAS  Google Scholar 

  18. J.P. Williams, J.M. Brown, I. Campuzano, P.J. Sadler, Chem. Commun. 46, 5458 (2010)

    Article  CAS  Google Scholar 

  19. S.R. Hart, Methods Mol. Biol. 658, 339 (2010)

    Article  CAS  Google Scholar 

  20. Y. Shen, N. Tolić, S.O. Purvine, R.D. Smith, J. Proteome Res. 11, 668 (2012)

    Article  CAS  Google Scholar 

  21. K. Gupta, M. Kumar, K. Chandrashekara, K.S. Krishnan, P. Balaram, J. Proteome Res. 11, 515 (2012)

    Article  CAS  Google Scholar 

  22. R. Almeida, C. Mosoarca, M. Chirita, V. Udrescu, N. Dinca, Z. Vukelić, M. Allen, A.D. Zamfir, Anal. Biochem. 378, 43 (2008)

    Article  CAS  Google Scholar 

  23. A. Serb, C. Schiopu, C. Flangea, E. Sisu, A.D. Zamfir, J. Mass Spectrom. 44, 1434 (2009)

    Article  CAS  Google Scholar 

  24. A. Serb, C. Schiopu, C. Flangea, Ž. Vukelić, E. Sisu, L. Zagrean, A.D. Zamfir, Eur. J. Mass Spectrom. 15, 541 (2009)

    Article  CAS  Google Scholar 

  25. C. Flangea, A.F. Serb, C. Schiopu, S. Tudor, E. Sisu, D.G. Seidler, A.D. Zamfir, Cent. Eur. J. Chem. 7, 752 (2009)

    Article  CAS  Google Scholar 

  26. C. Schiopu, C. Flangea, F. Capitan, A. Serb, Z. Vukelić, S. Kalanj-Bognar, E. Sisu, M. Przybylski, A.D. Zamfir, Anal. Bioanal. Chem. 395, 2465 (2009)

    Article  CAS  Google Scholar 

  27. L. Bindila, J. Peter-Katalinić, A.D. Zamfir, Electrophoresis 26, 1488 (2005)

    Article  CAS  Google Scholar 

  28. Z. Vukelić, S. Kalanj-Bognar, M. Froesch, L. Bîndila, B. Radić, M. Allen, J. Peter-Katalinić, A.D. Zamfir, Glycobiology 17, 504 (2007)

    Article  Google Scholar 

  29. A.D. Zamfir, N. Lion, Z. Vukelic, L. Bindila, J. Rossier, H.H. Girault, J. Peter-Katalinic, Lab. Chip 5, 298 (2005)

    Article  CAS  Google Scholar 

  30. I. Sisu, V. Udrescu, C. Flangea, S. Tudor, N. Dinca, L. Rusnac, A.D. Zamfir, E. Sisu, Cent. Eur. J. Chem. 7, 66 (2009)

    Article  CAS  Google Scholar 

  31. M. Szabó, M. Manea, E. Orbán, A. Csámpai, S. Bősze, R. Szabó, M. Tejeda, D. Gaál, B. Kapuvári, M. Przybylski, F. Hudecz, G. Mező, Bioconjug. Chem. 20, 656 (2009)

    Article  Google Scholar 

  32. P. Roepstorff, J. Fohlman, Biomed. Mass Spectrom. 11, 601 (1984)

    Article  CAS  Google Scholar 

  33. H.J. Sterling, E.R. Williams, Anal. Chem. 82, 9050 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina D. Zamfir.

Additional information

These authors have contributed equally

About this article

Cite this article

Flangea, C., Schiopu, C., Capitan, F. et al. Fully automated chip-based nanoelectrospray combined with electron transfer dissociation for high throughput top-down proteomics. cent.eur.j.chem. 11, 25–34 (2013). https://doi.org/10.2478/s11532-012-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-012-0130-2

Keywords

Navigation