Advertisement

Biologia

pp 1–21 | Cite as

Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Carpathians

  • Drahoš BlanárEmail author
  • Anna Guttová
  • Ivan Mihál
  • Vítězslav Plášek
  • Tomáš Hauer
  • Zdeněk Palice
  • Karol Ujházy
Original Article
  • 28 Downloads

Abstract

We aimed to identify how the alkaline dust fallout from magnesite factories (Slovenské rudohorie Mts, Western Carpathians) affects biodiversity and species composition of oak-hornbeam forests, and to compare sensitivity of local biodiversity represented by vascular plants (including flowering plants and ferns) and cryptogams (cyanobacteria, macromycetes, slime molds, lichens, bryophytes). Altogether 24 plots were sampled along four degradation stages during the vegetation seasons 2011–2016: A – poorly developed vegetation on the magnesite crust, B – dense grassland vegetation almost without a tree-layer, C – degraded woodland with opened canopy, and D – visually unaffected original closed-canopy woodland. For each plot we sampled phytocoenological relevés including vascular plants and terrestrial cryptogams (cyanobacteria, lichens and bryophytes), and presence records for epiphytic lichens, epiphytic bryophytes, sporocarps of macromycetes (terrestrial, saprotrophic, parasitic and ectomycorrizal) and sporocarps of slime molds. We also analyzed concentrations of C, Ca, Mg, S, N, P, K in the soil, light conditions, bark pH and the distance from two emission sources (ES). Increased alkaline dust, corresponding to a smaller distance from the emission source correlated with higher concentrations of Mg, Ca, Fe, S, C/N in soil samples. Regressive succession converted oak-hornbeam woodland to degraded woodland with opened canopy, further to ruderal grasslands, then to halophilous procoenoses of Agrostis stolonifera and Puccinellia distans on degraded soils with eroded magnesite crust and biocrusts (formed by cyanobacteria Microcoleus steenstrupii, Nostoc microscopicum and Schizothrix arenaria; bryophytes Desmatodon cernuus, Didymodon tophaceus; pioneer terrestrial lichen Thelidium zwackhii) and finally into habitat with no vegetation. This is the first report on early successional stages with halophilous procoenoses in the Western Carpathians. We also recorded significant differences in species richness and the species pools in all organism groups along the gradient. Overall species diversity decreased. The degradation stages are characterized by low representation of symbiotic macromycetes and by a high proportion of saprotrophic macromycetes. The highest species richness of vascular plants was recorded in degradation stages B and C, the highest herb-layer cover in stage B. The highest species richness of terrestrial bryophytes is also found in dense grassland vegetation in stage B. Occurrence of nitrophilous epiphytic lichens differentiates unaffected oak-hornbeam woodlands from the plots close to the emission source.

Keywords

Alkaline dust Terrestrial cyanobacteria Macrofungi Terrestrial and epiphytic lichens and bryophytes Vascular plants Post-industrial habitats Slovakia 

Notes

Acknowledgments

We are very grateful to Anna Petrášová for help with identification of terrestrial bryophytes. We also thank to anonymous reviewers and Michal Slezák (Associate Editor in Biologia) for their very valuable comments on the manuscript. The research was financially supported by the projects of the Slovak Scientific Grant Agency VEGA 2/0032/17, 1/0639/17 and 2/010118.

Supplementary material

11756_2019_344_MOESM1_ESM.xls (10 kb)
Supplementary S1 Frequency (%) of terrestrial cryptogams (cyanobacteria, lichens, bryophytes) in degradation stages A, B, C and D (XLS 10 kb)
11756_2019_344_MOESM2_ESM.xls (35 kb)
Supplementary S2 Frequency (%) of macromycetes and slime molds in degradation stages A, B, C and D (XLS 35 kb)
11756_2019_344_MOESM3_ESM.xls (12 kb)
Supplementary S3 Frequency (%) of epiphytic bryophytes and epiphytic lichens in degradation stages A, B, C and D (XLS 12 kb)
11756_2019_344_MOESM4_ESM.xls (20 kb)
Supplementary S4 Frequency (%) of vascular plants in degradation stages A, B, C and D (XLS 20 kb)

References

  1. Alwathnani H, Johansen JR (2011) Cyanobacteria in soils from a Mojave Desert ecosystem. Monographs of the Western North American Naturalist 5:71–89CrossRefGoogle Scholar
  2. Annonymus 2013 Program na zlepšenie kvality ovzdušia v oblasti riadenia kvality ovzdušia – územie mesta Jelšava a obcí Lubeník, Chyžné, Magnezitovce, Mokrá Lúka, Revúcka Lehota. Ministerstvo životného prostredia Slovenskej republiky, Okresný úrad Banská Bystrica & Slovenský hydrometeorologický ústav, 59 pp [cit. 2018-10-28]. Available at: https://enviroportal.sk/uploads/files/Dokumenty/PZKO-Jelsava-Lubenik-2013.pdf
  3. Aref’ev SP (1997) Consortium structure of xylotrophic fungal community of Tyumen. Mikol Fitopatol 21:1–8Google Scholar
  4. Ayer F, Lüscher P, Egli S (2003) Quelle est la place des champignons supérieurs dans les stations forestiéres? Schweiz. Z. Forstwes. 154:149–160.  https://doi.org/10.3188/szf.2003.0149
  5. Bacigálová K (1992) New localities of Taphrina carpini (Rostr.) Johans. On Carpinus betulus in Slovakia. Czech Mycol 46:296–302Google Scholar
  6. Bajaník Š, Ivanička J, Mello J, Reichwalder P, Pristaš J, Snopko L, Vozár J, Vozárová A (1984) Geological map of the Slovenské rudohorie Mts. Eastern part. 1:50 000. Slovak Geological Office Dionýz Štúr Institute of Geology, BratislavaGoogle Scholar
  7. Barkman JJ, Doing H, Segal S (1964) Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Neerl. 13:394–419.  https://doi.org/10.1111/j.1438-8677.1964.tb00164.x
  8. Belnap J (2003) The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–189.  https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2
  9. Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Naturalist 53:40–47Google Scholar
  10. Belnap J, Büdel B, Lange OL (2001) Biological Soil Crusts: Characteristics and Distribution. pp 3–30. In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies (Analysis and Synthesis), vol 150. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-56475-8_1
  11. Blanár D, Petrášová A (2007) Desmatodon cernuus (Huebener) Bruch & Schimp. – nový druh bryoflóry Slovenska. (Desmatodon cernuus (Huebener) Bruch & Schimp. – a new species in the bryoflora of Slovakia). Reussia, Revúca 4:79–106Google Scholar
  12. Bobro M, Hančulák J (2001) Influence of Slovak magnesite processing on the environment. Mineralia Slovaca 33:535–538Google Scholar
  13. Bondartseva MA, Svishch LG (1991) Changes in the species composition of bracket fungi under conditions of anthropogenic impact. In: Problemy lesopatologicheskogo monitoringa v taezhnykh lesakh evropeiskoi chasti SSSR: Tez. dokl. I Vsesoyuz. konf. (Problems of Forest Pathology Monitoring in Boreal Forests of the European Part of the USSR: Abstr. I AllUnion. Conf.), Petrozavodsk, KarNTs AN SSSRGoogle Scholar
  14. Brunner I (2001) Ectomycorrhizas: their role in forest ecosystems under the impact of acidifying pollutants. Perspectives Plant Ecol. Evol. System. 4(1):13–27.  https://doi.org/10.1078/1433-8319-00012
  15. Bublinec E (1974) Vplyv priemyselných imisií na produkčné a genetické vlastnosti pôd. (Impact of industrial emissions on the production and genetic properties of soils). pp 115–124. In: Sobocký E (ed), Les a priemyselné imisie. (Forest and Industrial Emissions). Veda, BratislavaGoogle Scholar
  16. Ceynowa-Giełdon M, Adamska E (2014) Notes on the genus Thelidium (Verrucariaceae, lichenized Ascomycota) in the Kujawy region (north-central Poland). Ecol. Quest. 19:25–33.  https://doi.org/10.12775/EQ.2014.002
  17. Cicák A, Mihál I, Kulfan J, Šušlík V, Zach P, Krištín A (1999) Health state of forest tree species and selected groups of fungi and animals in surroundings of a magnesium factory (Central Slovakia). Ekológia (Bratislava) 18:211–222Google Scholar
  18. Cicák A, Kellerová D, Kulfan J, Mihál I (2011) Imisie ako škodlivý činiteľ. (emission as a harmful factor). In: Barna M, Kulfan J, Bublinec E (eds) Buk a bukové ekosystémy Slovenska (Beech and Beech Ecosystems in Slovakia). VEDA, Bratislava, pp 555–573Google Scholar
  19. Csikósová A, Čulková K, Antošová M (2013) Magnesite industry in the Slovak Republic. Gosp. Surow. Mineral. 29:21–35.  https://doi.org/10.2478/gospo-2013-0028
  20. Degtjarenko P, Marmor L, Randlane T (2016a) Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient. Environ. Sci. Pollut. Res. 23:17413–17425.  https://doi.org/10.1007/s11356-016-6933-5
  21. Degtjarenko P, Marmor L, Tőrra T, Lerch M, Saag A, Randlane T, Scheidegger Ch (2016b) Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations. Fungal Biology 120:1165–1174.  https://doi.org/10.1016/j.funbio.2016.05.010
  22. Degtjarenko P, Matos P, Marmor L, Branquinho C, Randlane T (2018) Functional traits of epiphytic lichens respond to alkaline dust pollution. Fungal Biology 36:81–88.  https://doi.org/10.1016/j.funeco,2018,08,006
  23. Dierssen K (2001) Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophyt Biblioth 56:1–289Google Scholar
  24. DIN/ISO (13878:1998) (1998) Soil quality – Determination of total nitrogen content by dry combustion („elemental analysis“). SÚTN, BratislavaGoogle Scholar
  25. Dostál J, Červenka F (1992) Veľký kľúč na určovanie rastlín 2. (Big key for determining of higher plants). SPN, BratislavaGoogle Scholar
  26. Ďurža O (2008) Impact of magnesite exploitation and processing on environment in Slovakia. Život Prostr 42:48–52Google Scholar
  27. Esseen PA (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. J. Veget. Sci. 17:185–194.  https://doi.org/10.1658/1100-9233(2006)17[185:EIOTOF]2.0.CO;2
  28. Farmer AM (1993) The effects of dust on vegetation – a review. Env. Pollut. 79:63–75.  https://doi.org/10.1016/0269-7491(93)90179-R
  29. Fellner R (1987a) Mykocenózy mykorrhizných hub, jejich dynamika, struktura a klasifikace. (Mycocoenosis of mycorrhizal fungi, their dynamics, structure and classification). In: Fellner R (ed), Ekologie mykorrhiz a mykorrhizních hub. Imise a mykorrhiza, (Ecology of mycorrhizae and mycorrhitic fungi. Emissions and mycorhiza). Sborník, ČSVSM, Špindlerův Mlýn, pp 137–145
  30. Fellner R (1987b) Monitorování zmĕn v druhové diverzitĕ mykorrhizních hub na imisnĕ různĕ exponovaných stanovištích. (Monitoring of changes in species diversity of mycorrhizal fungi on the emission of various exposed habitats). In: Fellner R (ed), Ekologie mykorrhiz a mykorrhizních hub. Imise a mykorrhiza. (Ecology of mycorrhizae and mycorrhitic fungi. Immissions and mycorhiza). Sborník, ČSVSM, Špindlerův Mlýn, pp 93–103Google Scholar
  31. Fiala K, Záhora J, Tůma I, Holub P (2004) Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius) into acidophilous dry grassland. Ekológia, Bratislava 23:225–240Google Scholar
  32. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist 58:295–311Google Scholar
  33. Frák G (1981) Magnezit Lubeník 1956–1981. Východoslovenské vydavateľstvo, KošiceGoogle Scholar
  34. Frati L, Brunialti G, Loppi S (2008) Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Sci. Total Environm. 407:630–637.  https://doi.org/10.1016/j.scitotenv.2008.07.063
  35. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New YorkGoogle Scholar
  36. Fu SS, Li PJ, Feng Q, Li XJ, Li P, Sun YB, Chen Y (2011) Soil quality degradation in a magnesite mining area. Pedosphere 21:98–106.  https://doi.org/10.1016/S1002-0160(10)60084-7
  37. Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577.  https://doi.org/10.1126/science.1236404 CrossRefGoogle Scholar
  38. Gilbert OL (1990) The lichen flora of urban wasteland. Lichenologist 22:87–101.  https://doi.org/10.1017/S0024282990000056
  39. Gordienko PV, Gordienko MV (1987) Antropogennoje vozdejstvie na rozvitie gribnych boleznej lesa. (anthropogenic impact to the fungal diseases of forest). Mikol Fitopatol 21:377–387Google Scholar
  40. Govindapyari H, Leleeka M, Nivedita M, Uniyal PL (2010) Bryophytes: indicators and monitoring agents of pollution. NeBIO 1:35–41Google Scholar
  41. Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org. 2017 (accessed 31.1.2018)
  42. Guttová A, Lackovičová A, Pišút I (2013) Revised and updated checklist of lichens of Slovakia (May 2013). Biologia, Bratislava 68:845–850.  https://doi.org/10.2478/s11756-013-0218-y CrossRefGoogle Scholar
  43. Haapala H, Goltsova N, Pitulko V, Lodenius M (1996) The effects of simultaneous large acidic and alkaline airborne pollutants on forest soil. Environ. Pollut. 94:159–168.  https://doi.org/10.1016/S0269-7491(96)00072-3
  44. Haapala H, Goltsova N, Lodenius M (2001) Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollution. Environ. Pollution 115:33–41.  https://doi.org/10.1016/S0269-7491(01)00094-X
  45. Hajdúk J (1961) Kvantitatívne a kvalitatívne zmeny fytocenóz spôsobené továrenskými exhalačnými splodinami. (Quantitative and qualitative changes in plant communities caused by factory exhalations). Biológia (Bratislava) 16:404–418Google Scholar
  46. Hajdúk J (1965) Vplyv magnezitových exhalačných splodín na vegetáciu a pôdu. (Effect of magnesite exhalation sludge on vegetation and soil). pp 31–39. In: Problémy znečisťovania ovzdušia. Zborník materiálov zo Sympózia o problematike exhalátov na Slovensku. (In: Problems of Air Pollution. Proceedings of symposium on problematic exhalates in Slovakia), SmoleniceGoogle Scholar
  47. Hajdúk J (1967) Výsledky geobotanického výskumu pôsobenia magnezitových exhalátov na vegetáciu a pôdu. (results of geobotanic research on the effect of magnesite exhalates on vegetation and soil). Kandidátska dizertačná práca. (dissertation), 285 pp [Depon. In Ústav biológie krajiny SAV, Bratislava]Google Scholar
  48. Hajdúk J (1978) Predbežné zistenie a mapové zobrazenie rozsahu ovplyvnenej vegetácie priemyselnými exhalátmi na Slovensku. (preliminary detection and mapping of the extent of the vegetation affected by industrial exhalations in Slovakia). Acta bot. Slov., Ser. A 4:137–147Google Scholar
  49. Hajdúk J, Hauskrecht I (1967) Príspevok k výskumu horečnatých pôd v oblasti magnezitových závodov a k ich meliorácii. (Contribution to the study of magnesium soils in magnesite plants and their melioration). Poľnohospodárstvo, Bratislava 13:7–17Google Scholar
  50. Hančinský L (1972) Lesné typy Slovenska. SVPL, Bratislava, 307 ppGoogle Scholar
  51. Hančulák J (2000) Vývoj spádovej prašnosti v oblasti závodu SMZ, a.s., Jelšava. (development of the dust deposition in the area surrounding the SMZ, a.s., Jelšava). Acta Montan Slovaca 3:310–312Google Scholar
  52. Härtel O, Grill D (1972) Die Leitfähigkeit von Fichtenborken-Extrakten als empfindlicher Indikator für Luftverunreinigung. Eur J For Pathol 2:205–215CrossRefGoogle Scholar
  53. Hodgetts N (2008) Tortula cernua (Huebener) Lindb. UK Biodiversity Action Plan. Available at: https://www.google.sk/search?q=desmatodon+cernuus&ei=9JgRWtf7CpDUaaCurcgK&start=30&sa=N&biw=1600&bih=747 (accessed 19.11.2017)
  54. Hodgetts NG (2015) Checklist and country status of European bryophytes – towards a new Red List for Europe. Irish Wildlife Manuals, No. 84. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, IrelandGoogle Scholar
  55. Holobradý K, Supuka J, Bublinec E, Čaboun V, Dubová M, Gáper J, Greguš C, Hoffman J, Chudík J, Janičina P, Krištín A, Kukla J, Kulfan J, Mihálik A, Mosný J, Patočka J, Saniga M, Šuslík V, Zach P (1994) Rámcové projekty ozdravných opatrení vo vytypovaných oblastiach (Oblasť Jelšava, Lubeník a Hnúšťa). (Framework projects for remedial measures in the designated areas (Jelšava, Lubeník and Hnúšťa). Referenčná úloha 15/PHÚ-OLH, Ústav ekológie lesa SAV ZvolenGoogle Scholar
  56. Hronec O, Vilček J, Adamišin P, Andrejovský P, Huttmanová E (2012) Use of Phragmites australis (Cav.) Trin and its reproduction in the revitalization of contaminated soils. J. Prod Eng 15:107–111Google Scholar
  57. ISO (15178:2000) (2000) Soil quality – Determination of total sulphur by dry combustionGoogle Scholar
  58. Jarolímek I, Šibík J, Tichý L, Kliment J, Šibíková I, Hegedüšová K, Valachovič M, Michálková D, Škodová I, Sadloňová J, Zaliberová M, Májeková J (2008) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, BratislavaGoogle Scholar
  59. Jenness J (2005) Random Point Generator 1.3. Available at: http://www.jennessent.com/downloads/random_points_online.pdf (accesssed 1.9.2012)
  60. Jupina GA (1987) Derevorozrušajuščije griby lesnych geobiocenozov. (Lignicolous fungi of forest geobiocenoses). Mikol Fitopatol 21:82–85Google Scholar
  61. Jurko A (1990) Ekologické a socioekonomické hodnotenie vegetácie. (Ecological and socio-economic assessment of vegetation). Príroda, BratislavaGoogle Scholar
  62. Kaleta M (1971) Vplyv magnezitových imisií na zmeny rastlinných spoločenstiev. (Impact of magnesite emissions on changes in plant communities). pp 599–615. In: Zborník prednášok zo zjazdu Slov. Bot. Spol. (In: Proccedings of congress of Slov. Bot. Spol.) SAV, BratislavaGoogle Scholar
  63. Kaleta M (1974a) Vplyv magnezitových imisií na niektoré lesné spoločenstvá. (Impact of magnesite emissions on some forest communities). pp 96–104. In: Sobocký E (ed), Les a priemyselné imisie. (Forest and industrial emissions). Veda, BratislavaGoogle Scholar
  64. Kaleta M (1974b) Vzťah niektorých burinových druhov k magnezitovým imisiám. (relationship of some weed species to magnesite emissions). Acta bot. Slovaca, ser A1:239–244Google Scholar
  65. Kaleta M (1975) Vegetačné pomery v oblasti Jelšavy so zreteľom na imisné podmienky. Quaestiones geobiologicae. (Vegetation conditions in the Jelšava area with regard to immission conditions). Problémy biológie krajiny. 17. Veda, BratislavaGoogle Scholar
  66. Kaleta M (1984) Synanthrope vegetation im Bereich von Emissionsquellen. Acta bot. Slov. Acad. Sci. Slov, ser. A (Suppl 1):107–109Google Scholar
  67. Kaštovský J, Řeháková K, Bastl M, Vymazal J, King RS (2008) Experimental assessment of phosphorus effects on algal assemblages in dosing mesocosms. In: Richardson C (ed), The Everglades Experiments. Springer, New York.  https://doi.org/10.1007/978-0-387-68923-4_18
  68. Kirk P (2019) (continuously updated) Index Fungorum. Available at: http://www.indexfungorum.org
  69. Koděra M, Andrusovová-Vlčeková G, Belešová O, Briatková D, Dávidová Š, Fejdiová V, Hurai V, Chovan M, Nelišerová E, Ženiš P (1990) Topografická mineralógia Slovenska 2. (Topographic mineralogy of Slovakia). Veda, BratislavaGoogle Scholar
  70. Krippelová T (1982) The influence of emissions from a magnesium factory on ruderal communities. In: Bornkamp R, Lee JA, Seaward MRD (eds) Urban ecology. Blackwell Scientific Publications, OxfordGoogle Scholar
  71. Krutov VI (1992) Anthropogenic impact on forest communities and the development of mycocenoses. In: Nauchnye osnovy ustoichivosti lesov k derevorazrushayushchim gribam (scientific basis of sustainability of forests to wood destroying Fungi), Nauka, MoscowGoogle Scholar
  72. Kubinská A, Janovicová K (1998) Machorasty (bryophytes). pp 297–332. In: Marhold K, Hindák F (eds), Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, BratislavaGoogle Scholar
  73. Kubinská A, Janovicová K, Šoltés R (2001) Aktualizovaný zoznam pečeňoviek, rožtekov a machov Slovenska. (Actual list of Hepaticae, Anthocerotae and Musci of Slovakia). Bryonora 28:4–10Google Scholar
  74. Kučera J, Váňa J (2003) Check- and red list of bryophytes of the Czech Republic. Preslia 75:193–222Google Scholar
  75. Lara F, Garilleti R, Goffinet B, Draper I, Medina R, Vigalondo B, Mazimpaka V (2016) Lewinskya, a New Genus to Accommodate the Phaneroporous and Monoicous Taxa of Orthotrichum (Bryophyta, Orthotrichaceae). Cryptogam Bryol. 37:361–382.  https://doi.org/10.7872/cryb/v37.iss4.2016.361
  76. Larsen RS, Bell JNB, James PW, Chimonides PJ, Rumsey FJ, Tremper A, Purvis OW (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ. Pollut. 146:332–340.  https://doi.org/10.1016/j.envpol.2006.03.033
  77. Leško O, Bobro M (1987) Development of dust deposition in the plants of SMZ Jelšava and SMZ Lubeník. Rudy-uhlí-geologický pruzkum 8:232–234Google Scholar
  78. Łuczaj Ł, Sadowska B (1997) Edge effect in different groups of organisms: vascular plant, bryophyte and fungi species richness across a forest-grassland border. Folia Geobot Phytotax 32:343–353.  https://doi.org/10.1007/BF02821940 CrossRefGoogle Scholar
  79. Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor Ecol 9:341–350.  https://doi.org/10.1046/j.1526-100X.2001.94002.x CrossRefGoogle Scholar
  80. Machín J, Navas A (2000) Soil pH changes induced by contamination by magnesium oxides dust. Land Degrad Dev 11:37–50.  https://doi.org/10.1002/(SICI)1099-145X(200001/02)11:1<37::AID-LDR366>3.0.CO;2-8 CrossRefGoogle Scholar
  81. Marhold K, Goliašová K, Hegedüšová Z, Hodálová I, Jurkovičová V, Kmeťová E, Letz R, Michalková E, Mráz P, Peniažteková M, Šípošová H, Ťavoda O (1998) Papraďorasty a semenné rastliny (ferns and flowering plants). In: Marhold K, Hindák F (eds) Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, Bratislava, pp 333–687Google Scholar
  82. Marmor L, Randlane T (2007) Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Folia Cryptog Estonica 43:23–37Google Scholar
  83. Michalko J, Berta J, Magic D (1986) Geobotanická mapa ČSSR, Slovenská socialistická republika. (Geobotanical map of ČSSR, Slovak Socialist Republic). Veda, BratislavaGoogle Scholar
  84. Mihál I, Blanár D (2007) Mykoflóra v oblasti magnezitového závodu Slovmag a.s., Lubeník (Slovenské rudohorie – Revúcka vrchovina). (Mycoflora in the area of the magnesite factory Slovmag inc., Lubeník (Slovenské Rudohorie Mts – Revúcka Vrchovina Mts)). Reussia, Revúca 4:35–59Google Scholar
  85. Mihál I, Blanár D, Glejdura S (2015) Enhancing knowledge of mycoflora (Myxomycota, Zygomycota, Ascomycota, Basidiomycota) in oak-hornbeam forests in the vicinity of the magnesite plants at Lubeník and Jelšava (Central Slovakia). Thaiszia – J Bot 25:121–142Google Scholar
  86. Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens – Monitoring lichens. pp 1–4. In: Nimis PL, Scheidegger C, Wolseley PA (eds), Monitoring with Lichens — Monitoring Lichens. NATO Science Series (Series IV: Earth and Environmental Sciences), vol 7. Springer, Dordrecht.  https://doi.org/10.1007/978-94-010-0423-7_1
  87. Nowak A, Plášek V, Nobis M, Nowak S (2016) Epiphytic communities of open habitats in the western Tian-Shan Mts (Middle Asia: Kyrgyzstan). Cryptogam Bryol 37:415–433.  https://doi.org/10.7872/cryb/v37.iss4.2016.415 CrossRefGoogle Scholar
  88. Oren A (2014) Cyanobacteria: biology, ecology and evolution. Pp 1–20. Cyanobacteria: an economic perspective. In: Naveen KS, Ashwani KR, Lucas RS (eds), John Wiley & sons. LtdGoogle Scholar
  89. Paal J, Degtjarenko P (2015) Impact of Alkaline Cement-Dust Pollution on Boreal Pinus sylvestris Forest Communities: A Study at the Bryophyte Synusiae Level. Ann Bot Fenn 52:120–134.  https://doi.org/10.5735/085.052.0213 CrossRefGoogle Scholar
  90. Paal J, Degtjarenko P, Suija A, Liira J (2013) Vegetation responses to long-term alkaline cement dust pollution in Pinus sylvestris-dominated boreal forests – niche breadth along the soil pH gradient. Appl Veg Sci 16:248–259.  https://doi.org/10.1111/j.1654-109X.2012.01224.x CrossRefGoogle Scholar
  91. Palice Z, Soldán Z (2004) Lichen and bryophyte species diversity on toxic substrates in the abandoned sedimentation basins of Chvaletice and Bukovina. In: Kovář P (ed) Natural recovery of human-made deposits in landscape (biotic interactions and ore/ash-slag artificial ecosystems). Academia, Praha, pp 200–221Google Scholar
  92. Paoli L, Guttová A, Grassi A, Lackovičová A, Senko D, Loppi S (2014) Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecol. Indicators 40:127–135.  https://doi.org/10.1016/j.ecolind.2014.01.011
  93. Paoli L, Guttová A, Grassi A, Lackovičová A, Senko D, Sorbo S, Basile A, Loppi S (2015) Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia). Environ Sci Pollut Res 22:15891.  https://doi.org/10.1007/s11356-015-4807-x CrossRefGoogle Scholar
  94. Pišút I, Guttová A, Lackovičová A, Lisická E (2001) Červený zoznam lišajníkov Slovenska. (Red-list of lichens of Slovakia). In: Baláž D, Marhold K, Urban P (eds), Červený zoznam rastlín a živočíchov Slovenska. (Red-list of plants and animals of Slovakia). Ochrana prírody 20(Suppl.):23–30Google Scholar
  95. Plášek V, Nowak A, Nobis M, Kusza G, Kochanowska K (2014) Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environ Monit Assess 186(12):8943–8959.  https://doi.org/10.1007/s10661-014-4056-3 CrossRefGoogle Scholar
  96. Plášek V, Sawicki J, Ryszard O, Szczecinska M, Kulik T (2015) New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta). Acta Mus Siles Sci Natur 64:169–174.  https://doi.org/10.1515/cszma-2015-0024 Google Scholar
  97. Plášek V, Blanár D, Fialová L, Skoupá Z (2016) Remarkable findings of mosses from Orthotrichaceae family in the Muránska planina National Park (Slovakia). Acta Mus Siles Sci Natur 65:167–178.  https://doi.org/10.1515/cszma-2016-0021 Google Scholar
  98. Prach K (1983) Příspěvek k otázkám ekologické sukcese. (Contribution to ecological succession issues). (Doctoral dissertation) ČSAV PrahaGoogle Scholar
  99. Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecol Eng 17:55–62.  https://doi.org/10.1016/S0925-8574(00)00132-4 CrossRefGoogle Scholar
  100. Prach K, Pyšek P, Bastl M (2001) Spontaneous vegetation succession in human-disturbed habitats: A pattern across seres. Appl Veg Sci 4:83–88.  https://doi.org/10.1111/j.1654-109X.2001.tb00237.x CrossRefGoogle Scholar
  101. Prach K, Lencová K, Řehounková K, Dvořáková H, Jírová A, Konvalinková P, Novák J, Trnková R (2013) Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ Sci Pollut Res 20:7680–7685.  https://doi.org/10.1007/s11356-013-1563-7 CrossRefGoogle Scholar
  102. Prasanna SNR (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5:103–113Google Scholar
  103. Procházková J, Plášek V, Mikulášková E (2016) Mechorosty na borce stromů v údolí Černé Ostravice (CHKO Beskydy). [Bryoflora on tree bark in the Černá Ostravice Valley (protected landscape area Beskydy Mts.)]. Bryonora 57:16–28Google Scholar
  104. Řehounek J, Řehounková K, Tropek T, Prach K (2010) Ekologická obnova území narušených těžbou nerostných surovin a průmyslovými deponiemi. (Ecological restoration of areas disturbed by mining and industrial depots). Calla, České BudějoviceGoogle Scholar
  105. Santos A, Pinho P, Munzi S, Botelho MJ, Palma-Oliveira JM, Branquinho C (2017) The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape. Environ Sci Pollut Res 24:12038–12048.  https://doi.org/10.1007/s11356-017-8964-y CrossRefGoogle Scholar
  106. Såstad SM, Janssen HB (1993) Interpretation of regional differences in the fungal biota as effect of atmospheric pollution. Mycol Res 97:1451–1458.  https://doi.org/10.1016/S0953-7562(09)80216-5 CrossRefGoogle Scholar
  107. Sawicki J, Plášek V, Ochyra R, Szczecińska M, Ślipiko M, Myszczyński K, Kulik T (2017) Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta). Sci Rep 7:4408.  https://doi.org/10.1038/s41598-017-04833-z CrossRefGoogle Scholar
  108. Sedláková I, Fiala K (2001) Ecological problems of degradation of alluvial meadows due to expanding Calamagrostis epigejos. Ekológia, Bratislava 20(Suppl. 3):226–233Google Scholar
  109. Stavishenko IV, Kshnyasev IA (2013) Response of forest communities of xylotrophic fungi on industrial pollution: Multimodel inference. Biol Bull 40:404–413.  https://doi.org/10.1134/S1062359013040146 CrossRefGoogle Scholar
  110. STN/ISO (10694:2001) (2001) Soil quality – Determination of total carbon content by dry combustion („elemental analysis“). SÚTN, BratislavaGoogle Scholar
  111. Suija A, Liira J (2017) Community response to alkaline pollution as an adjusting re-assembly between alternative stable states. J. Veg. Sci. 28(3):527–537.  https://doi.org/10.1111/jvs.1250
  112. Ter Braak, CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NYGoogle Scholar
  113. Thüs H, Nascimbene J (2008) Contributions toward a new taxonomy of Central European freshwater species of the lichen genus Thelidium (Verrucariales, Ascomycota). Lichenologist 40:499–521.  https://doi.org/10.1017/S0024282908007603
  114. Tichý L (2002) JUICE, software for vegetation classification. J. Veg. Sci. 13:451–453.  https://doi.org/10.1658/1100-9233(2002)013[0451:JSFVC]2.0.CO;2
  115. Ujházy K (2003) Sekundárna sukcesia na opustených lúkach a pasienkoch Poľany. (Secondary succession on abandoned meadows and pastures of the Poľana Mt.) Vedecké štúdie 7/2003/A, TU ZvolenGoogle Scholar
  116. Ulrichs C, Welke B, Mucha-Pelzer T, Goswami A, Mewis I (2008) Effect of solid particulate matter deposits on vegetation: a review. Function Plant Sci Biotechnol 2:56–62Google Scholar
  117. Valachovič M, Oťahelová H, Hrivnák R (2001) Isoëto-Nanojuncetea. In: Valachovič M (ed) Rastlinné spoločenstvá Slovenska 3. Vegetácia mokradí. (Plant communities of Slovakia 3. Wetland Vegetation). Veda, Bratislava, pp 345–347Google Scholar
  118. Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  119. Wirth V, Hauck M, Schultz M (2013) Die Flechten Deutschlands. 1, 2. Eugen Ulmer, Stuttgart, 1244 pp [1: 672 pp, 2: 672 pp]Google Scholar
  120. Wyatt FA (1916) Influence of calcium and magnesium compounds on plant growth. J Agric Res 6:589–629Google Scholar
  121. Yang D, Zeng D-H, Zhang J, Li L-J, Mao R (2012) Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China. Land Degrad. Dev. 23:256–262.  https://doi.org/10.1002/ldr.1077
  122. Zaliberová M, Škodová I (2014) Potentillo-Polygonetalia R. Tx. 1947. pp 330–382. In: Hegedüšová Vantarová K, Škodová I (eds), Rastlinné spoločenstvá Slovenska 5. Travinno-bylinná vegetácia (Plant communities of Slovakia. 5. Grassland Vegetation). Veda, BratislavaGoogle Scholar
  123. Zbíral J, Malý S, Honsa I (1997) Analýza půd: jednotné pracovní postupy. Vyd. 1. (Soil analysis: uniform working practices. 1st Edition). Ústrední kontrolní a zkušební ústav zemědelský, BrnoGoogle Scholar
  124. Zimmermann DG, Guderley E (2012) Flechten und flechtenbewohnende Pilze auf dem Gelände des ehemaligen Rangierbahnhofes Wuppertal-Vohwinkel (VohRang) unter besonderer Berücksichtigung ephemerer Arten. Jahr. Naturwiss. Vereins Wuppertal 62:223–240Google Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Drahoš Blanár
    • 1
    • 2
    Email author
  • Anna Guttová
    • 3
  • Ivan Mihál
    • 4
  • Vítězslav Plášek
    • 5
  • Tomáš Hauer
    • 6
  • Zdeněk Palice
    • 7
    • 8
  • Karol Ujházy
    • 2
  1. 1.Administration of the Muránska planina National ParkRevúcaSlovakia
  2. 2.Department of Phytology, Faculty of ForestryTechnical University in ZvolenZvolenSlovakia
  3. 3.Institute of Botany, Plant Science and Biodiversity CentreSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Institute of Forest EcologySlovak Academy of SciencesZvolenSlovakia
  5. 5.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  6. 6.Faculty of ScienceČeské BudějoviceCzech Republic
  7. 7.Institute of BotanyAcademy of Science of the Czech RepublicPrůhoniceCzech Republic
  8. 8.Department of Botany, Faculty of ScienceCharles UniversityPrahaCzech Republic

Personalised recommendations