Advertisement

Biologia

pp 1–14 | Cite as

Postglacial succession of caddisfly (Trichoptera) assemblages in a central European montane lake

  • Daniel VondrákEmail author
  • Nick B. Schafstall
  • Pavel Chvojka
  • Richard C. Chiverrell
  • Niina Kuosmanen
  • Jolana Tátosová
  • Jennifer L. Clear
Original Article

Abstract

The Bohemian Forest lakes, situated along the Czech-German-Austrian border, were strongly affected by atmospheric acidification between the 1950s and the late 1980s. The subsequent chemical recovery of the lake water should precede and enable a biological recovery, including changes in caddisfly (Insecta: Trichoptera) assemblages. Nevertheless, local pre-acidification data and detailed knowledge of the lake district history are missing, making evaluation of lake recovery difficult. We performed high-resolution analysis of caddisfly remains in a 2.2 m long sediment profile from Prášilské Lake covering the complete history of the lake-catchment evolution. Caddisfly larvae are good indicators of environmental conditions and their subfossil remains are well preserved in unconsolidated waterlaid sediments. A total of 10 caddisfly morpho-taxa were found providing a record from 11,400 cal. yr. BP to the present. With the exception of Athripsodes aterrimus, all identified species are currently present in the Bohemian Forest glacial lakes or their inflow streams but not all of them are documented in Prášilské Lake. The caddisfly fauna consisted of acid-resistant, acid-tolerant and eurytopic species since the Early Holocene. Based on our results, the acid, dystrophic state of Prášilské Lake has been occurring since the lake formation. We conclude that the first signs of natural acidification appeared not later than during the Holocene onset in the Bohemian Forest region. Furthermore, we did not detect any abrupt changes in the species composition connected to the period of anthropogenic acidification during the twentieth century. This study provides for the first time a record of postglacial succession of caddisfly assemblages in a central European mountain lake.

Keywords

Natural acidification Holocene Palaeolimnology Macrozoobenthos Lake sediment Erosion events Bohemian Forest 

Notes

Acknowledgments

We thank Alexander Klink for his help with caddisfly remains identification, Jana Petruželová for her comments on recent caddisfly fauna of the Bohemian Forest lakes, Petr Kuneš for allowing us to study the sediment profile, and colleagues for assistance during fieldwork. This study was supported by the Internal Grant Agency of the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague (IGA grant 21/17), the Czech Grant Foundation (project no. 16-23183Y – PEDECO; project no. 16-06915S – EUROPIA), and the Ministry of Culture of the Czech Republic (DKRVO 2018/12, National Museum, 00023272).

Funding

This study was funded by the Czech Grant Foundation (project no. 16-23183Y and project no. 16-06915S), the Ministry of Culture of the Czech Republic (DKRVO 2018/12, National Museum, 00023272), and the Internal Grant Agency of the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague (IGA grant 21/17).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Albers D, Migge S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164.  https://doi.org/10.1016/j.soilbio.2003.09.002 Google Scholar
  2. Andersen T, Tysse Å (2008) Life cycle of Chaetopteryx villosa (Fabricius, 1798) (Trichoptera: Limnephilidae) in a lowland- and a mountain-stream in western Norway. Aquat Insects 6(4):217–231.  https://doi.org/10.1080/01650428409361187 Google Scholar
  3. Beamish RJ (1976) Acidification of lakes in Canada by acid precipitation and the resulting effects on fishes. Water Air Soil Pollut 6:501–514.  https://doi.org/10.1007/BF00182888 Google Scholar
  4. Beisel J-N, Usseglio-Polatera P, Thomas S, Moreteau J-C (1998) Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389:73–88.  https://doi.org/10.1023/A:1003519429979 Google Scholar
  5. Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene – a synthesis. J Paleolimnol 23:91–114.  https://doi.org/10.1023/A:1008079725596 Google Scholar
  6. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738.  https://doi.org/10.1046/j.1365-2745.1998.8650717.x Google Scholar
  7. Boyle JF (1995) A simple closure mechanism for a compact, large-diameter, gravity corer. J Paleolimnol 13(1):85–87.  https://doi.org/10.1007/BF00678113 Google Scholar
  8. Boyle JF (2007) Loss of apatite caused irreversible early-Holocene lake acidification. Holocene 17(4):543–547.  https://doi.org/10.1177/0959683607077046 Google Scholar
  9. Boyle JF, Chiverrell RC, Plater A, Thrasher I, Bradshaw E, Birks H, Birks J (2013) Soil mineral depletion drives early Holocene lake acidification. Geology 41:415–418.  https://doi.org/10.1130/G33907.1 Google Scholar
  10. Bradt P, Urban M, Goodman N, Bissell S, Spiegel I (1999) Stability and resilience in benthic macroinvertebrate assemblages - impact of physical disturbance over twenty-five years. Hydrobiologia 403:123–133.  https://doi.org/10.1023/A:1003711928980 Google Scholar
  11. Braukmann U, Biss R (2004) Conceptual study – an improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica 34:433–450.  https://doi.org/10.1016/S0075-9511(04)80011-2 Google Scholar
  12. Buczyńska E, Czachorowski S, Buczyński P, Pakulnicka J, Stępień E, Szlauer-Łukaszewska A, Stryjecki R, Zawal A (2017) Environmental heterogeneity at different scales: key factors affecting caddisfly larvae assemblages in standing waters within a lowland river catchment. J Limnol 76(2):305–325.  https://doi.org/10.4081/jlimnol.2016.1535 Google Scholar
  13. Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M (2016) Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in Central Europe. For Ecol Manag 363:169–178.  https://doi.org/10.1016/j.foreco.2015.12.023 Google Scholar
  14. Carter VA, Chiverrell RC, Clear JL, Kuosmanen N, Moravcová A, Svoboda M, Svobodová- Svitavská H, van Leeuwen JFN, van der Knaap WO, Kuneš P (2018a) Quantitative palynology informing conservation ecology in the bohemian/Bavarian forest of Central Europe. Front Plant Sci 8:2268.  https://doi.org/10.3389/fpls.2017.02268 Google Scholar
  15. Carter VA, Moravcová A, Chiverrell RC, Clear JL, Finsinger W, Dreslerová D, Halsall K, Kuneš P (2018b) Holocene-scale fire dynamics of central European temperate spruce–beech forests. Quat Sci Rev 191:15–30.  https://doi.org/10.1016/j.quascirev.2018.05.001 Google Scholar
  16. Chvojka P (1992) Chrostíci (Trichoptera, Insecta) Tatranského národního parku [Caddisflies (Trichoptera, Insecta) of the Tatra National Park]. Zborník prác o Tatranskom národnom parku 32:165–195. [in Czech, English summary]Google Scholar
  17. Clair TA, Dennis IF, Scruton DA, Gillis M (2007) Freshwater acidification research in Atlantic Canada: a review of results and predictions for the future. Environ Rev 15:153–167.  https://doi.org/10.1139/A07-004 Google Scholar
  18. Elias SA (2010) Advances in quaternary entomology. Elsevier, Amsterdam.  https://doi.org/10.1016/S1571-0866(09)01225-1
  19. Elias SA, Wilkinson B (1983) Lateglacial insect fossil assemblages from Lobsigensee (Swiss Palteau). Studies in the Late Quaternary of Lobsigensee 3. Rev Paléobiol 2(2):189–204Google Scholar
  20. Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166.  https://doi.org/10.1038/35041500 Google Scholar
  21. Fjellheim A, Raddum GG (1990) Acid precipitation: biological monitoring of streams and lakes. Sci Total Environ 96:57–66.  https://doi.org/10.1016/0048-9697(90)90006-G Google Scholar
  22. Fott J, Pražáková M, Stuchlík E, Stuchlíková Z (1994) Acidification of lakes in Šumava (Bohemia) and in the high Tatra Mountains (Slovakia). Hydrobiologia 274:37–47.  https://doi.org/10.1007/BF00014625 Google Scholar
  23. Frič A (1872) Über die Fauna der Böhmerwaldseen. Sitzungsberichte der königlichen böhmischen Gesellschaft der Wissenschaften in Prag 1872(2):3–12 [in German]Google Scholar
  24. Graf W, Murphy J, Dahl J, Zamora-Muñoz C, López-Rodríguez MJ (2008) Distribution and ecological preferences of European freshwater organisms. Volume 1. Trichoptera. Pensoft Publishers, Sofia and MoscowGoogle Scholar
  25. Greenwood MT, Agnew MD, Wood PJ (2003) The use of caddisfly fauna (Insecta: Trichoptera) to characterise the Late-Glacial River Trent, England. J Quaternary Sci 18:645–661.  https://doi.org/10.1002/jqs.786 Google Scholar
  26. Greenwood MT, Wood PJ, Monk WA (2006) The use of fossil caddisfly assemblages in the reconstruction of flow environments from floodplain paleochannels of the river Trent, England. J Paleolimnol 35:747–761.  https://doi.org/10.1007/s10933-005-5162-6 Google Scholar
  27. Hering D, Meier C, Rawer-Jost C, Feld CK, Biss R, Zenker A, Sundermann A, Lohse S, Böhmer J (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34:398–415.  https://doi.org/10.1016/S0075-9511(04)80009-4 Google Scholar
  28. Howard LC, Wood PJ, Greenwood MT, Rendell HM (2009) Reconstructing riverine paleo-flow regimes using subfossil insects (Coleoptera and Trichoptera): the application of the LIFE methodology to paleochannel sediments. J Paleolimnol 42:453–466.  https://doi.org/10.1007/s10933-008-9298-z Google Scholar
  29. Ings NL, Grey J, King L, McGowan S, Hildrew AG (2017) Modification of littoral algal assemblages by gardening caddisfly larvae. Freshw Biol 62:507–518.  https://doi.org/10.1111/fwb.12881 Google Scholar
  30. Ivanov VD (2011) Caddisflies of Russia: Fauna and biodiversity. Zoosymposia 5:171–209.  https://doi.org/10.1134/S001387381201006X Google Scholar
  31. Jia J, Gao Y (2017) Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China. J Hydrol 555:155–168.  https://doi.org/10.1016/j.jhydrol.2017.10.017 Google Scholar
  32. Klapálek F (1903) Zpráva o výzkumu českých Neuropteroid v r. 1902 [A report on the research of Bohemian Neuropteroids in the year 1902]. Věstník České Akademie Císaře Františka Josefa pro Vědy, Slovesnost a Umění 12:257–264. [in Czech]Google Scholar
  33. Kletetschka G, Vondrák D, Hrubá J, Procházka V, Nábělek L, Svitavská-Svobodová H, Bobek P, Hořická Z, Kadlec J, Takáč M, Stuchlík E (2018) Cosmic-impact event in Lake sediments from Central Europe postdates the Laacher see eruption and Marks onset of the younger Dryas. J Geol 126(6):561–575.  https://doi.org/10.1086/699869 Google Scholar
  34. Kohout L, Fott J (2006) Restoration of zooplankton in a small acidified mountain Lake (Plešné lake, Bohemian Forest) by reintroduction of key species. Biologia 61(Suppl. 20):S477–S483.  https://doi.org/10.2478/s11756-007-0065-9 Google Scholar
  35. Kopáček J, Hejzlar J, Porcal P, Nedoma J (1999) Chemistry of Prášilské Lake and its tributaries during the 1998 summer temperature stratification. Silva Gabreta 3:33–48Google Scholar
  36. Kopáček J, Hejzlar J, Kaňa J, Norton SA, Porcal P, Turek J (2009) Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. J Inorg Biochem 103:1439–1448.  https://doi.org/10.1016/j.jinorgbio.2009.07.019 Google Scholar
  37. Krno I, Šporka F, Galas J, Hamerlík L, Zaťovičová Z, Bitušík P (2006) Littoral benthic macro- invertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland). Biologia 61(Suppl. 18):S147–S166.  https://doi.org/10.2478/s11756-006-0127-4 Google Scholar
  38. Kuneš P, Odgaard BV, Gaillard M-J (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–2164.  https://doi.org/10.1111/j.1365-2699.2011.02557.x Google Scholar
  39. Langheinrich U, Böhme D, Wegener U, Lüderitz V (2002) Streams in the Harz National Parks (Germany) - a hydrochemical and hydrobiological evaluation. Limnologica 32:309–321.  https://doi.org/10.1016/S0075-9511(02)80022-6 Google Scholar
  40. Larsen J, Birks HJB, Raddum GG, Fjellheim A (1996) Quantitative relationships of invertebrates to pH in Norwegian river systems. Hydrobiologia 328:57–74.  https://doi.org/10.1007/BF00016900 Google Scholar
  41. Mentlík P, Engel Z, Braucher R, Léanni L, Team A (2013) Chronology of the late Weichselian glaciation in the Bohemian Forest in Central Europe. Quat Sci Rev 65:120–128.  https://doi.org/10.1016/j.quascirev.2013.01.020 Google Scholar
  42. Michler G (2000) Untersuchungen an Sedimentkernen aus dem Großen Arbersee. Der Bayerische Wald 14(2):3–16 [in German]Google Scholar
  43. Michler G (2001) Untersuchungen an Sedimentkernen aus dem Schwarzen See (Cerne jezero) und Teufelssee (Certovov jezero) im Böhmerwald (Tschechien). Der Bayerische Wald 15(2):20–31 [in German]Google Scholar
  44. Mylona S (1996) Sulphur dioxide emissions in Europe 1880-1991 and their effect on sulphur concentrations and depositions. Tellus B 48:662–689.  https://doi.org/10.1034/j.1600-0889.1996.t01-2-00005.x Google Scholar
  45. Norton SA, Perry RH, Saros JE, Jacobson GL Jr, Fernandez IJ, Kopáček J, Wilson TA, SanClemens MD (2011) The controls on phosphorus availability in a Boreal lake ecosystem since deglaciation. J Paleolimnol 46:107–122.  https://doi.org/10.1007/s10933-011-9526-9 Google Scholar
  46. Norton SA, Kopáček J, Fernandez IJ (2013) Acid rain – acidification and recovery. In: Turekian KK, Holland HD (eds) Treatise on Geochemistry, 2nd edn, vol. 11: Environmental Geochemistry, Elsevier, Oxford, pp 379–414.  https://doi.org/10.1016/B978-0-08-095975-7.00910-4
  47. Novák K (1996) Fauna Trichopter Šumavy. Die Trichopterenfauna im Böhmerwald [Fauna of Trichoptera of the Bohemian Forest]. Sborník Jihočeského muzea v Českých Budějovicích, Přírodní vědy 36:51–61. [in Czech, German summary]Google Scholar
  48. Ponel P, Gandouin E, Coope GR, Andrieu-Ponel V, Guiter F, Van Vliet-Lanoe B, Franquet E, Brocandel M, Brulhet J (2007) Insect evidence for environmental and climate changes from younger Dryas to sub- Boreal in a river floodplain at St-Momelin (St-Omer basin, northern France), Coleoptera and Trichoptera. Palaeogeogr Palaeoclimatol Palaeoecol 245:483–504.  https://doi.org/10.1002/jqs.634 Google Scholar
  49. Pražáková M, Veselý J, Fott J, Majer V, Kopáček J (2006) The long-term succession of cladoceran fauna and palaeoclimate forcing: a 14,600–year record from Plešné Lake, the Bohemian Forest. Biologia 61(Suppl. 20):S387–S399.  https://doi.org/10.2478/s11756-007-0072-x Google Scholar
  50. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal. BP. Radiocarbon 55:1869–1887.  https://doi.org/10.2458/azu_js_rc.55.16947 Google Scholar
  51. Ross RM, Long ES, Dropkin DS (2008) Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage. Environ Monit Assess 145:323–338.  https://doi.org/10.1007/s10661-007-0042-3 Google Scholar
  52. Salisbury EJ (1922) Stratification and hydrogen-ion concentration of the soil in relation to leaching and plant succession with special reference to woodlands. J Ecol 9(2):220–240.  https://doi.org/10.1177/0959683607077046 Google Scholar
  53. Šámal J (1920) Příspěvek k plecopterologickému a trichopterologickému výzkumu šumavských vod [A contribution to the plecopterological and trichopterological research in Šumava mountains waters]. Časopis Národního Musea, Řada Přírodovědná 94:114–116 [in Czech]Google Scholar
  54. Savić A, Randelović V, Ðorđević M, Karadžić B, Ðokić M, Krpo-Ćetković J (2013) The influence of environmental factors on the structure of caddisfly (Trichoptera) assemblage in the Nišava River (Central Balkan Peninsula). Knowl Manag Aquat Ecosyst 409:03.  https://doi.org/10.1051/kmae/2013051 Google Scholar
  55. Schartau AK, Moe J, Sandin L, McFarland B, Raddum G (2008) Macroinvertebrate indicators of lake acidification: analysis of monitoring data from UK, Norway and Sweden. Aquat Ecol 42:293–305.  https://doi.org/10.1007/s10452-008-9186-7 Google Scholar
  56. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Blackwell Publishing, OxfordGoogle Scholar
  57. Šobr M, Janský B (2016) The morphometric parameters of glacial lakes in the Bohemian Forest. Silva Gabreta 22:31–61Google Scholar
  58. Soldán T, Bojková J, Vrba J, Bitušík P, Chvojka P, Papáček M, Peltanová J, Sychra J, Tátosová J (2012) Aquatic insects of the Bohemian Forest glacial lakes: diversity, long-term changes, and influence of acidification. Silva Gabreta 18(3):123–283Google Scholar
  59. Solem JO, Birks HH (2000) Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes Lake, western Norway. J Paleolimnol 23(1):49–56.  https://doi.org/10.1023/A:1008064831048 Google Scholar
  60. Solem JO, Solem T, Aagaard K, Hanssen O (1997) Colonization and evolution of lakes on the central Norwegian coast following deglaciation and land uplift 9500 to 7800 years B.P. J Paleolimnol 18:269–228.  https://doi.org/10.1023/A:1007934825272 Google Scholar
  61. Stuchlík E, Bitušík P, Hardekopf D, Hořická Z, Kahounová M, Tátosová J, Vondrák D, Dočkalová K (2017) Complexity in the biological recovery of Tatra mountain lakes from acidification. Water Air Soil Pollut 228:184.  https://doi.org/10.1007/s11270-017-3362-0 Google Scholar
  62. Švambera V (1914) Šumavská jezera III. Prášilské jezero. Rozpravy České akademie císaře Františka Josefa Class II 23(16):1–28 [in Czech]Google Scholar
  63. Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26(1–2):70–81.  https://doi.org/10.1016/j.quascirev.2006.07.017 Google Scholar
  64. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29(6):551–554.  https://doi.org/10.1130/0091-7613(2001)029<0551:CEVRTA>2.0.CO;2 Google Scholar
  65. Ungermanová L, Kolaříková K, Stuchlík E, Senoo T, Horecký J, Kopáček J, Chvojka P, Tátosová J, Bitušík P, Fjellheim A (2014) Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 69(9):1190–1201.  https://doi.org/10.2478/s11756-014-0420-6 Google Scholar
  66. Vočadlová K, Petr L, Žáčková P, Křížek M, Křížová L, Hutchinson SM, Šobr M (2015) The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas 44:769–784.  https://doi.org/10.1111/bor.12126 Google Scholar
  67. Vrba J, Kopáček J, Fott J (2000) Long-term limnological research of the Bohemian Forest lakes and their recent status. Silva Gabreta 4:7–28Google Scholar
  68. Vrba J, Kopáček J, Tahovská K, Šantrůčková H (2015) Long-term ecological research of glacial lakes in the Bohemian Forest and their catchments. Silva Gabreta 21(1):53–71Google Scholar
  69. Vrba J, Bojková J, Chvojka P, Fott J, Kopáček J, Macek M, Nedbalová L, Papáček M, Rádková V, Sacherová V, Soldán T, Šorf M (2016) Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshw Biol 61:376–395.  https://doi.org/10.1111/fwb.12714 Google Scholar
  70. Walker MJC, Berkelhammer M, Björk S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (International Commission on Stratigraphy). J Quat Sci 27(7):649–659.  https://doi.org/10.1002/jqs.2565 Google Scholar
  71. Wallace ID (1991) A review of the Trichoptera of Great Britain. Research and Survey in Nature Conservation 32:1–59Google Scholar
  72. Wallace ID, Wallace B, Philipson GN (1990) A key to the case-bearing caddis larvae of Britain and Ireland. Freshwater Biological Association, AmblesideGoogle Scholar
  73. Waringer J, Graf W (2011) Atlas der mitteleuropäischen Köcherfliegenlarven/atlas of central European Trichoptera larvae. Erik Mauch Verlag, DinkelscherbenGoogle Scholar
  74. Wiberg-Larsen P, Bennike O, Jensen JB, Lemke W (2001) Trichoptera remains from early Holocene river deposits in the Great Belt, Denmark. Boreas 30:299–306.  https://doi.org/10.1111/j.1502-3885.2001.tb01049.x Google Scholar
  75. Williams N (1988) The use of caddisflies (Trichoptera) in palaeoecology. Palaeogeogr Palaeoclimatol Palaeoecol 61(1–4):493–500.  https://doi.org/10.1016/0031-0182(88)90069-7 Google Scholar
  76. Zamora-Muñoz C, Svensson BW (1996) Survival of caddis larvae in relation to their case material in a group of temporary and permanent pools. Freshw Biol 36:23–31.  https://doi.org/10.1046/j.1365-2427.1996.00057.x Google Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institute for Environmental Studies, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  2. 2.Department of Forest Ecology, Faculty of Forestry and Wood SciencesCzech University of Life SciencesPrague 6Czech Republic
  3. 3.Department of EntomologyNational MuseumPrague 9Czech Republic
  4. 4.Department of Geography and Planning, School of Environmental SciencesUniversity of LiverpoolLiverpoolUnited Kingdom
  5. 5.Department of Geography and Environmental Sciences, Faculty of ScienceLiverpool Hope UniversityLiverpoolUnited Kingdom

Personalised recommendations