Advertisement

Biologia

pp 1–13 | Cite as

Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L.

  • Sedighe Jahani
  • Sara SaadatmandEmail author
  • Homa Mahmoodzadeh
  • Ramazan Ali Khavari-Nejad
Original Article
  • 6 Downloads

Abstract

The nanoparticles influence on plants’ biological processes has not been clearly understood. Increase of nanoparticles in the environment during advent of industrial technologies can be a significant threat to ecosystems, and their interaction with plants is very important. The aim of this study was to investigate the effects of cerium oxide nanoparticles (CeO2 NPs) on biochemical and physiological parameters of marigold (Calendula officinalis L.). Seeds were planted and after 2 weeks, seedlings were treated with different concentrations of CeO2 NPs (50, 100, 200, 400, 800, 1600 and 3200 mg L−1) with foliar spray method. The hydrogen peroxide content and membrane electrolyte leakage were respectively increased after 100 and 200 mg L−1 CeO2 NPs treatment. Except for glutathione reductase (GR), the activities of antioxidant enzymes e.g. catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APOX), guaiacol peroxidase (GPOX), glutathione S-transferase (GST) and polyphenol oxidase (PPO) were induced by high concentrations of CeO2 NPs. Application of CeO2 NPs increased the contents of proline and soluble sugars after 200 mg L−1 and glycine betaine (GB) after 400 mg L−1. The growth parameters and chlorophyll contents were increased at low concentrations of CeO2 NPs (50 and 100 mg L−1) and decreased at higher ones. The results suggested that low concentrations of CeO2 NPs had a positive induction effect on C. officinalis but higher ones caused oxidative stress and toxicity responses. It seemed that induction of defense system including antioxidant enzymes activities and accumulation of osmolytes were not sufficient for reactive oxygen (ROS) detoxification.

Keywords

Cerium oxide nanoparticles Glutathione S-transferase Glycine betaine Marigold Polyphenol oxidase Oxidative stress 

Notes

Compliance with ethical standards

Disclosure

The authors declare that they have no conflict of interest.

Supplementary material

11756_2019_239_MOESM1_ESM.docx (6.5 mb)
ESM 1 (DOCX 6663 kb)

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 Google Scholar
  2. Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331.  https://doi.org/10.1021/nn100816s Google Scholar
  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207.  https://doi.org/10.1007/BF00018060 Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 Google Scholar
  5. Casals E, Vázquez-Campos S, Bastús NG, Puntes V (2008) Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. Trends Anal Chem 27(8):672–683.  https://doi.org/10.1016/j.trac.2008.06.004 Google Scholar
  6. Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5(3):250–257.  https://doi.org/10.1016/S1369-5266(02)00255-8 Google Scholar
  7. Collin B, Auffan M, Johnson AC, Kaur I, Keller AA, Lazareva A, Lead JR, Ma X, Merrifield RC, Svendsen C, White JC, Unrine JM (2014) Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ Sci: Nano 1(6):533–548.  https://doi.org/10.1039/C4EN00149D Google Scholar
  8. Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol 150(1):521–530.  https://doi.org/10.1104/pp.109.136630 Google Scholar
  9. Danielski L, Campos LMAS, Bresciani LFV, Hense H, Yunes RA, Ferreira SRS (2007) Marigold (Calendula officinalis L.) oleoresin: solubility in SC-CO2 and composition profile. Chem Eng Process 46:99–106.  https://doi.org/10.1016/j.cep.2006.05.004 Google Scholar
  10. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9.  https://doi.org/10.1016/S0168-9452(98)00025-9 Google Scholar
  11. Du W, Gardea-Torresdey JL, Ji R, Yin Y, Zhu J, Peralta-Videa JR, Guo H (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893.  https://doi.org/10.1021/acs.est.5b03055 Google Scholar
  12. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250-251:318–332.  https://doi.org/10.1016/j.jhazmat.2013.01.063 Google Scholar
  13. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25.  https://doi.org/10.1007/BF00386001 Google Scholar
  14. García-SÁnchez F, Martínez V, Jifon J, Syvertsen JP, Grosser JW (2002) Salinity reduces growth, gas exchange, chlorophyll and nutrient concentrations in diploid sour orange and related allotetraploid somatic hybrids. J Hortic Sci Biotechnol 77(4):379–386.  https://doi.org/10.1080/14620316.2002.11511509 Google Scholar
  15. Giannopolitis CN, Ries SK (1977) Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol 59(2):309–314.  https://doi.org/10.1104/pp.59.2.309 Google Scholar
  16. Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2):303–307.  https://doi.org/10.1007/BF02374789 Google Scholar
  17. Gui X, Rui M, Song Y, Ma Y, Rui Y, Zhang P, He X, Li Y, Zhang Z, Liu L (2017) Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus). Environ Sci Pollut Res 24(15):13775–13781.  https://doi.org/10.1007/s11356-017-8880-1 Google Scholar
  18. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139Google Scholar
  19. Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385.  https://doi.org/10.1021/es404931g Google Scholar
  20. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692.  https://doi.org/10.1007/s11051-013-1692-4 Google Scholar
  21. Khan N, Bano A (2016) Role of plant growth promoting rhizobacteria and ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation 18(3):211–221.  https://doi.org/10.1080/15226514.2015.1064352 Google Scholar
  22. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806.  https://doi.org/10.1007/s11270-011-1067-3 Google Scholar
  23. Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97Google Scholar
  24. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (10):1056–1058.  https://doi.org/10.1039/B615134E
  25. Kováčik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 320:231–242.  https://doi.org/10.1007/s11104-009-9889-0 Google Scholar
  26. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):651–658.  https://doi.org/10.1016/j.procbio.2012.01.006 Google Scholar
  27. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675.  https://doi.org/10.1002/etc.58 Google Scholar
  28. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382.  https://doi.org/10.1016/0076-6879(87)48036-1 Google Scholar
  29. Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z, Wang Y (2005) Responses of peanut to nano-calcium carbonate. Plant Nutrition and Fertilizer Science 11(3):385–389. CBA:617556. http://europepmc.org/abstract/CBA/617556. Accessed 01 Jan 2005Google Scholar
  30. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279.  https://doi.org/10.1016/j.chemosphere.2009.10.050 Google Scholar
  31. Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci: Nano 3(6):1369–1379.  https://doi.org/10.1039/C6EN00189K Google Scholar
  32. MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol 99(3):872–878.  https://doi.org/10.1104/pp.99.3.872 Google Scholar
  33. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880.  https://doi.org/10.1093/oxfordjournals.pcp.a076232 Google Scholar
  34. Niu J, Wang K, Kolattukudy PE (2011) Cerium oxide nanoparticles inhibits oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther 338(1):53–61.  https://doi.org/10.1124/jpet.111.179978 Google Scholar
  35. Pandey P, Singh J, Achary VMM, Reddy MK (2015) Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci 3:25.  https://doi.org/10.3389/fenvs.2015.00025 Google Scholar
  36. Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Baudouin E, Hérouart D, Frendo P, Puppo A (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume-rhizobium symbiosis. J Exp Bot 57(8):1769–1776.  https://doi.org/10.1093/jxb/erj184 Google Scholar
  37. Pulido-Reyes G, Rodea-Palomares I, Das S, Sakthivel TS, Leganes F, Rosal R, Seal S, Fernández-Piñas F (2015) Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep 5:15613.  https://doi.org/10.1038/srep15613 Google Scholar
  38. Raymond J, Rakariyatham N, Azanza JL (1993) Purification and some properties of polyphenol oxidase from sunflowers seeds. Phytochemistry 34(4):927–931.  https://doi.org/10.1016/S0031-9422(00)90689-7 Google Scholar
  39. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642.  https://doi.org/10.1021/es401032m Google Scholar
  40. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285.  https://doi.org/10.1021/jf404046v Google Scholar
  41. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013c) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118.  https://doi.org/10.1021/es4033887 Google Scholar
  42. Salehi H, Chehregani A, Lucini L, Majd A, Gholami M (2018) Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616-617:1540–1551.  https://doi.org/10.1016/j.scitotenv.2017.10.159 Google Scholar
  43. Saquib Q, Faisal M, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, Alwathnani HA, Okla MK, Dwivedi S, Musarrat J, Praveen S, Khan ST, Wahab R, Siddiqui MA, Ahmad J (2016) Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: deciphering the role of signaling factors, oxidative stress and cell death. J Environ Sci (China) 47:49–62.  https://doi.org/10.1016/j.jes.2015.12.037 Google Scholar
  44. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365.  https://doi.org/10.1093/jexbot/53.372.1351 Google Scholar
  45. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10(3):257–278.  https://doi.org/10.3109/17435390.2015.1048326 Google Scholar
  46. Shyam R, Aery NC (2012) Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. J Soil Sci Plant Nutr 12(1):1–14.  https://doi.org/10.4067/S0718-95162012000100001 Google Scholar
  47. Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51(13):7361–7368.  https://doi.org/10.1021/acs.est.7b00813 Google Scholar
  48. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24(6):345–351.  https://doi.org/10.1016/S0098-2997(03)00030-X Google Scholar
  49. Suprasanna P, Nikalje GC, Rai AN (2016) Osmolyte accumulation and implications in plant abiotic stress tolerance. In: Iqbal N, Nazar R, Khan AN (eds) Osmolytes and plants acclimation to changing environment: Emerging omics technologies. Springer, New Delhi, pp 1–12.  https://doi.org/10.1007/978-81-322-2616-1_1
  50. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151(1):59–66.  https://doi.org/10.1016/S0168-9452(99)00197-1 Google Scholar
  51. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134.  https://doi.org/10.1021/nn800511k Google Scholar
  52. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90.  https://doi.org/10.1038/am.2013.88 Google Scholar
  53. Yang X, Pan H, Wang P, Zhao FJ (2017) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300.  https://doi.org/10.1016/j.jhazmat.2016.03.054 Google Scholar
  54. Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822.  https://doi.org/10.1039/C1MT00049G Google Scholar
  55. Zhang W, Ebbs SD, Musante C, White JC, Gao C, Ma X (2015) Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J Agric Food Chem 63(2):382–390.  https://doi.org/10.1021/jf5052442 Google Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Sedighe Jahani
    • 1
  • Sara Saadatmand
    • 1
    Email author
  • Homa Mahmoodzadeh
    • 2
  • Ramazan Ali Khavari-Nejad
    • 1
  1. 1.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Biology, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations