Advertisement

Biologia

, Volume 74, Issue 7, pp 889–898 | Cite as

Evaluation of the effects of extracellular vesicles derived from Faecalibacterium prausnitzii on lung cancer cell line

  • Behnoush Jafari
  • Ramazan Ali Khavari Nejad
  • Farzam Vaziri
  • Seyed Davar SiadatEmail author
Original Article
  • 39 Downloads

Abstract

Recently, the effect of intestinal microbiota on the lungs has been reported in several studies as the gut-lung axis, which interferes with inflammatory processes through the translocation of bacterial products across the gastrointestinal tract barrier into blood vessels. In numerous studies, the anti-inflammatory properties of Faecalibacterium prausnitzii strains have been reported both in vivo and in vitro. In this process, the secretion of bioactive molecules with anti-inflammatory effects is one of the strategies that the bacterium uses. Extracellular vesicles (EVs) have drawn the attention of scientists due to their role in cell-to-cell communication either locally or over long distances. In this study, we evaluated the effects of Faecalibacterium prausnitzii supernatant and EVs on the expression profile of cytokines and chemokines by using lung cancer cell line (A549). Principal analysis showed that the bacterial supernatant and derived EVs were able to dysregulate the expression of some specific cytokines. However, the response of bacterium-secreted EVs was more significant compared to the bacterial supernatant for some key cytokines. The secreted EVs significantly could upregulate anti-inflammatory cytokines (IL-10, TGF-β2 and IL-1Ra). On the other hand, F. prausnitzii EVs could downregulate some of the important pro-inflammatory cytokines such as IL-6, TNF-α and TNF-β.

Keywords

Gut-lung axis Faecalibacterium prausnitzii Extracellular vesicles Cytokines qPCR 

Abbreviations

IBS

irritable bowel syndrome

MAM

microbial anti-inflammatory molecule

EV

extracellular vesicles

OMV

outer membrane vesicles

MV

membrane vesicles

EPM

Extracellular Polymeric Matrix

FBS

fetal bovine serum

DSS

Dextran Sodium Sulfate

hPBMCs

human peripheral blood mononuclear cells

hDCs

human monocyte-derived dendritic cells

Tregs

regulatory T cells

BMDCs

bone marrow-derived dendritic cells

ADIPOQ

Adiponectin, C1Q and collagen domain containing

BMP2

Bone morphogenetic protein 2

BMP4

Bone morphogenetic protein 4

BMP6

Bone morphogenetic protein 6

BMP7

Bone morphogenetic protein 7

C5

Complement component 5

CCL1

Chemokine (C-C motif) ligand 1

CCL11

Chemokine (C-C motif) ligand 11

CCL13

Chemokine (C-C motif) ligand 13

CCL17

Chemokine (C-C motif) ligand 17

CCL18

Chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)

CCL19

Chemokine (C-C motif) ligand 19

CCL2

Chemokine (C-C motif) ligand 2

CCL20

Chemokine (C-C motif) ligand 20

CCL21

Chemokine (C-C motif) ligand 21

CCL22

Chemokine (C-C motif) ligand 22

CCL24

Chemokine (C-C motif) ligand 24

CCL3

Chemokine (C-C motif) ligand 3

CCL5

Chemokine (C-C motif) ligand 5

CCL7

Chemokine (C-C motif) ligand 7

CCL8

Chemokine (C-C motif) ligand 8

CD40LG

CD40 ligand

CNTF

Ciliary neurotrophic factor

CSF1

Colony stimulating factor 1 (macrophage)

CSF2

Colony stimulating factor 2 (granulocyte-macrophage)

CSF3

Colony stimulating factor 3 (granulocyte)

CX3CL1

Chemokine (C-X3-C motif) ligand 1

CXCL1

Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)

CXCL10

Chemokine (C-X-C motif) ligand 10

CXCL11

(Chemokine (C-X-C motif) ligand 11

CXCL12

Chemokine (C-X-C motif) ligand 12

CXCL13

Chemokine (C-X-C motif) ligand 13

CXCL16

Chemokine (C-X-C motif) ligand 16

CXCL2

Chemokine (C-X-C motif) ligand 2

CXCL5

Chemokine (C-X-C motif) ligand 5

CXCL9

Chemokine (C-X-C motif) ligand 9

FASLG

Fas ligand (TNF superfamily, member 6)

GPI

Glucose-6-phosphate isomerase

IFNA2

Interferon, alpha 2

IFNG

Interferon, gamma

IL10

Interleukin 10

IL11

Interleukin 11

IL12A

Interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte maturation factor 1, p35)

IL12B

Interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic lymphocyte maturation factor 2, p40)

IL13

Interleukin 13

IL15

Interleukin 15

IL16

Interleukin 16

IL17A

Interleukin 17A

IL17F

Interleukin 17F

IL18

Interleukin 18 (interferon-gamma-inducing factor)

IL1A

Interleukin 1, alpha

IL1B

Interleukin 1, beta

IL1RN

Interleukin 1 receptor antagonist

IL2

Interleukin 2

IL21

Interleukin 21

IL22

Interleukin 22

IL23A

Interleukin 23, alpha subunit p19

IL24

Interleukin 24

IL27

Interleukin 27

IL3

Interleukin 3 (colony-stimulating factor, multiple)

IL4

Interleukin 4

IL5

Interleukin 5 (colony-stimulating factor, eosinophil)

IL6

Interleukin 6 (interferon, beta 2)

IL7

Interleukin 7

CXCL8

Interleukin 8

IL9

Interleukin 9

LIF

Leukemia inhibitory factor (cholinergic differentiation factor)

LTA

Lymphotoxin alpha (TNF superfamily, member 1)

LTB

Lymphotoxin beta (TNF superfamily, member 3)

MIF

Macrophage migration inhibitory factor (glycosylation-inhibiting factor)

MSTN

Myostatin

NODAL

Nodal homolog (mouse)

OSM

Oncostatin M

PPBP

Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)

SPP1

Secreted phosphoprotein 1

TGFB2

Transforming growth factor, beta 2

THPO

Thrombopoietin

TNF

Tumor necrosis factor

TNFRSF11B

Tumor necrosis factor receptor superfamily, member 11b

TNFSF10

Tumor necrosis factor (ligand) superfamily, member 10

TNFSF11

Tumor necrosis factor (ligand) superfamily, member 11

TNFSF13B

Tumor necrosis factor (ligand) superfamily, member 13b

VEGFA

Vascular endothelial growth factor A

XCL1

Chemokine (C motif) ligand 1

Notes

Acknowledgments

We thank all the personnel of Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran for their assistance in this project.

Author contributions

BJ wrote the manuscript and performed laboratory work. SDS, RAKN and FV supervised the project. SDS designed the project. All authors have read and approved the final manuscript.

Compliance with ethical standards

Competing interests

No competing financial and/or non-financial interests.

References

  1. Acevedo R et al (2014) Bacterial outer membrane vesicles and vaccine applications. Front Immunol 5:121.  https://doi.org/10.3389/fimmu.2014.00121 CrossRefGoogle Scholar
  2. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787.  https://doi.org/10.1038/nri2868 CrossRefGoogle Scholar
  3. Baker JL, Chen L, Rosenthal JA, Putnam D, DeLisa MP (2014) Microbial biosynthesis of designer outer membrane vesicles. Curr Opin Biotechnol 29:76–84.  https://doi.org/10.1016/j.copbio.2014.02.018 CrossRefGoogle Scholar
  4. Bauman SJ, Kuehn MJ (2009) Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 9:26.  https://doi.org/10.1186/1471-2180-9-26 CrossRefGoogle Scholar
  5. Bi Y, Liu G, Yang R (2011) Reciprocal modulation between TH17 and other helper T cell lineages. J Cell Physiol 226:8–13.  https://doi.org/10.1002/jcp.22331 CrossRefGoogle Scholar
  6. Bingula R et al (2017) Desired turbulence? Gut-lung axis, immunity, and lung cancer. Journal of oncology 2017.  https://doi.org/10.1155/2017/5035371
  7. Brown L, Wolf JM, Prados-Rosales R, Casadevall A (2015) Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13:620.  https://doi.org/10.1038/nrmicro3480 CrossRefGoogle Scholar
  8. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM (2017) Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol 15:55.  https://doi.org/10.1038/nrmicro.2016.142 CrossRefGoogle Scholar
  9. Carlsson AH, Yakymenko O, Olivier I, Håkansson F, Postma E, Keita ÅV, Söderholm JD (2013) Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol 48:1136–1144.  https://doi.org/10.3109/00365521.2013.828773 CrossRefGoogle Scholar
  10. Chelakkot C et al (2018) Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 50:e450.  https://doi.org/10.1038/emm.2017.282 CrossRefGoogle Scholar
  11. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193.  https://doi.org/10.1038/ncomms13193 CrossRefGoogle Scholar
  12. Choi C-W, Park EC, Yun SH, Lee S-Y, Kim SI, Kim G-H (2017) Potential usefulness of Streptococcus pneumoniae extracellular membrane vesicles as antibacterial vaccines. J Immunol Res 2017.  https://doi.org/10.1155/2017/7931982
  13. Codemo M, Muschiol S, Iovino F, Nannapaneni P, Plant L, Wai SN, Henriques-Normark B (2018) Immunomodulatory effects of pneumococcal extracellular vesicles on cellular and humoral host defenses. mBio 9:e00559–e00518.  https://doi.org/10.1128/mBio.00559-18 CrossRefGoogle Scholar
  14. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, Pietrella D (2018) Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid Based Complement Alternat Med 2018.  https://doi.org/10.1155/2018/1756308
  15. Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K (2018) Extracellular vesicles: new players in lung immunity. Am J Respir Cell Mol Biol 58:560–565.  https://doi.org/10.1165/rcmb CrossRefGoogle Scholar
  16. Gregory AE, Williamson D, Titball R (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13.  https://doi.org/10.3389/fcimb.2013.00013 CrossRefGoogle Scholar
  17. Jafari B, Khavari Nejad RA, Vaziri F, Siadat SD (2017) Isolation and characterization of Faecalibacterium prausnitzii extracellular vesicles. Vaccine Research 4:51–54.  https://doi.org/10.29252/vacres.4.3.4.51 CrossRefGoogle Scholar
  18. Jess T, Horváth-Puhó E, Fallingborg J, Rasmussen HH, Jacobsen BA (2013) Cancer risk in inflammatory bowel disease according to patient phenotype and treatment: a Danish population-based cohort study. Am J Gastroenterol 108:1869.  https://doi.org/10.1038/ajg.2013.249 CrossRefGoogle Scholar
  19. Kang C-S et al (2013) Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One 8:e76520.  https://doi.org/10.1371/journal.pone.0076520 CrossRefGoogle Scholar
  20. Keely S, Talley NJ, Hansbro PM (2012) Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol 5:7.  https://doi.org/10.1038/mi.2011.55 CrossRefGoogle Scholar
  21. Kelly K et al (2001) Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non–small-cell lung cancer: a southwest oncology group trial. J Clin Oncol 19:3210–3218.  https://doi.org/10.1200/JCO.2001.19.13.3210 CrossRefGoogle Scholar
  22. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents Inflamm Allergy Drug Discov 3:73–80.  https://doi.org/10.2174/187221309787158371 CrossRefGoogle Scholar
  23. Kim OY et al (2017) Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun 8:626.  https://doi.org/10.1038/s41467-017-00729-8 CrossRefGoogle Scholar
  24. Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from gram-negative bacteria. Microbiology 160:2109–2121.  https://doi.org/10.1099/mic.0.079400-0 CrossRefGoogle Scholar
  25. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773.  https://doi.org/10.1126/science.1195568 CrossRefGoogle Scholar
  26. Lizotte P, Wen A, Sheen M, Fields J, Rojanasopondist P, Steinmetz N, Fiering S (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295.  https://doi.org/10.1038/nnano.2015.292 CrossRefGoogle Scholar
  27. Manning AJ, Kuehn MJ (2013) Functional advantages conferred by extracellular prokaryotic membrane vesicles. J Mol Microbiol Biotechnol 23:131–141.  https://doi.org/10.1159/000346548 CrossRefGoogle Scholar
  28. Manuzak J, Dillon S, Wilson C (2012) Differential interleukin-10 (IL-10) and IL-23 production by human blood monocytes and dendritic cells in response to commensal enteric bacteria. Clin Vaccine Immunol 19:1207–1217.  https://doi.org/10.1128/CVI.00282-12 CrossRefGoogle Scholar
  29. Martín R et al (2014) The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis 20:417–430.  https://doi.org/10.1097/01.MIB.0000440815.76627.64 CrossRefGoogle Scholar
  30. Martín R et al (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. Prausnitzii as a next-generation probiotic. Front Microbiol 8:1226.  https://doi.org/10.3389/fmicb.2017.01226 CrossRefGoogle Scholar
  31. Matsuzaki T, Yokokura T, Azuma I (1985) Anti-tumour activity of lactobacillus casei on Lewis lung carcinoma and line-10 hepatoma in syngeneic mice and Guinea pigs. Cancer Immunol Immunother 20:18–22.  https://doi.org/10.1007/BF00199768 CrossRefGoogle Scholar
  32. Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613.  https://doi.org/10.1139/m89-097 CrossRefGoogle Scholar
  33. Nøkleby H, Aavitsland P, O’hallahan J, Feiring B, Tilman S, Oster P (2007) Safety review: two outer membrane vesicle (OMV) vaccines against systemic Neisseria meningitidis serogroup B disease. Vaccine 25:3080–3084.  https://doi.org/10.1016/j.vaccine.2007.01.022 CrossRefGoogle Scholar
  34. Perwez Hussain S, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380.  https://doi.org/10.1002/ijc.23173 CrossRefGoogle Scholar
  35. Qiu X, Zhang M, Yang X, Hong N, Yu C (2013) Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohn's Colitis 7:e558–e568.  https://doi.org/10.1016/j.crohns.2013.04.002 CrossRefGoogle Scholar
  36. Quevrain E et al. (2015) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut:gutjnl-2014-307649.  https://doi.org/10.1136/gutjnl-2014-307649
  37. Ripert G, Racedo SM, Elie A-M, Jacquot C, Bressollier P, Urdaci MC (2016) Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob Agents Chemother 60:3445–3454.  https://doi.org/10.1128/AAC.02815-15 CrossRefGoogle Scholar
  38. Rossi O et al (2015) Faecalibacterium prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS One 10:e0123013.  https://doi.org/10.1371/journal.pone.0123013 CrossRefGoogle Scholar
  39. Rossi O et al (2016) Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep 6:18507.  https://doi.org/10.1038/srep18507 CrossRefGoogle Scholar
  40. Shen Y, Torchia MLG, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12:509–520.  https://doi.org/10.1016/j.chom.2012.08.004 CrossRefGoogle Scholar
  41. Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science:aac4255.  https://doi.org/10.1126/science.aac4255
  42. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci 105:16731–16736.  https://doi.org/10.1073/pnas.0804812105 CrossRefGoogle Scholar
  43. Wan Y et al (2014) Fermentation supernatants of lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol Lett 7:1738–1742.  https://doi.org/10.3892/ol.2014.1959 CrossRefGoogle Scholar
  44. Wang H et al (2013) Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases. World J Gastroenterol: WJG 19:6794.  https://doi.org/10.3748/wjg.v19.i40.6794 CrossRefGoogle Scholar
  45. Zhang M et al (2014) Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One 9:e109146.  https://doi.org/10.1371/journal.pone.0109146 CrossRefGoogle Scholar
  46. Zitvogel L et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4:594.  https://doi.org/10.1038/nm0598-594 CrossRefGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Behnoush Jafari
    • 1
  • Ramazan Ali Khavari Nejad
    • 1
  • Farzam Vaziri
    • 2
  • Seyed Davar Siadat
    • 2
    Email author
  1. 1.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC)Pasteur Institute of IranTehranIran

Personalised recommendations