Advertisement

Biologia

, Volume 74, Issue 7, pp 835–850 | Cite as

Key factors in organization of sandy orthopteran assemblages

  • Zoltán KenyeresEmail author
  • Szilárd Szabó
  • Csaba Szinetár
  • Gábor Takács
  • Norbert Bauer
Original Article
  • 20 Downloads

Abstract

Orthopterans are important functional elements of ecosystems, in which several factors influence their distribution and density. Factors related to the vegetation, macro- and microclimate have been intensively investigated, although the role of the bedrock and soil in organization of orthopteran assemblages has not been explored sufficiently. Our results showed that general effects, as (1) dry, warm macro- and microclimate, (2) short vegetation, (3) presence of about 30% bare sand surface, are important habitat factors organizing sandy orthopteran assemblages of the Carpathian Basin too. Further we found that optimal climate and vegetation structure is not sufficient for a high species number of sand-specialists. Local assemblages rich in sand elements are related to sand areas characterised by a proportion of the fine fraction of the soil (= small-fine-dust fractions together) of around 80%.

Keywords

Grasshoppers Climate Soil parameters Biogeography Aridity Insolation 

Notes

Acknowledgments

Szilard Szabo was financed by the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of thematic programme no. 4 of the University of Debrecen.

Compliance with ethical standards

Ethical approval

Studies were carried out with approval of Fertő-Hanság, Kiskunság, Duna-Ipoly and Balaton Uplands National Park Directorates.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Báldi A, Kisbenedek T (1999) Orthopterans in small steppe patches: an investigation for the best-fit model of the species-area curve and evidences for their non-random distribution in the patches. Acta Oecol 20:125–132.  https://doi.org/10.1016/S1146-609X(99)80025-3 CrossRefGoogle Scholar
  2. Bartha S, Molnár Z, Fekete G (2008) Patch dynamics in sand grasslands: connecting primary and secondary succession. In: Kovács-Láng E, Molnár E, Kröel-Dulay G, Barabás S (eds) The KISKUN LTER, Long-term ecological research in the Kiskunság. Institute of Ecology and Botany, Vácrátót, pp 37–40Google Scholar
  3. Bauer N (2006) Open sandy grasslands of the Bakony region. Studia Bot Hung 37:5–33Google Scholar
  4. Bauer N (2014) A Bakony-vidék szárazgyepjei – Sztyeprétek és sziklagyepek osztályozása és növényföldrajzi karaktere (Dry grasslands of the Bakony Region – Classification and phytogeographical character of dry and rocky grasslands). Magyar Természettudományi Múzeum, BudapestGoogle Scholar
  5. Bauer N, Kenyeres Z (2006) Data to the microclimate of some characteristic grassland associations of the Transdanubian Mountains. Acta Bot Hungar 48:9–27.  https://doi.org/10.1556/ABot.48.2006.1-2.2 CrossRefGoogle Scholar
  6. Bazelet CS, Samways MJ (2011) Identifying grasshopper bioindicators for habitat quality assessment of ecological networks. Ecol Indic 11:1259–1269.  https://doi.org/10.1016/j.ecolind.2011.01.005 CrossRefGoogle Scholar
  7. Beckerman AP (2002) The distribution of Melanoplus femurrubrum: fear and freezing in Connecticut. Oikos 99:131–140.  https://doi.org/10.1034/j.1600-0706.2002.990113.x CrossRefGoogle Scholar
  8. Bonte D, Dekoninck W, Provoost S, Cosijns E, Hoffmann M (2003) Microgeographical distribution of ants (Hymenoptera: Formicidae) in coastal dune grassland and their relation to the soil structure and vegetation. Anim Biol 53:367–377.  https://doi.org/10.1163/157075603322556274 CrossRefGoogle Scholar
  9. Borhidi A (1956) Die Steppen und Wiesen im Sandgebiet der Kleinen Ungarischen Tiefebene. Acta Bot Hungar 5:241–273Google Scholar
  10. Borhidi A (1961) Klimadiagramme und Klimazonale Karte Ungarns. Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Biol 4:21–50Google Scholar
  11. Borhidi A, Kevey B, Lendvai G (2012) Plant communities of Hungary. Akadémiai Kiadó, BudapestGoogle Scholar
  12. Chapman RL, Page WW (1978) Embryonic development and water relations of the eggs of Zonocerus variegatus (L.) (Acridoidea: Pyrgmorphidae). Acrida 7:243–252Google Scholar
  13. Cigliano MM, Braun H, Eades DC, Otte D (2017) Orthoptera Species File. Version 5.0/5.0. <http://Orthoptera.SpeciesFile.org>. Accessed 25 Oct 2017
  14. Cizek L, Hauck D, Pokluda P (2012) Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera). J Insect Conserv 16:281–293.  https://doi.org/10.1007/s10841-011-9415-6 CrossRefGoogle Scholar
  15. Cornelisse TM, Hafernik JE (2009) Effects of soil characteristics and human disturbance on tiger beetle oviposition. Ecol Entomol 34:495–503.  https://doi.org/10.1111/j.1365-2311.2009.01093.x CrossRefGoogle Scholar
  16. Crous CJ, Samways MJ, Pryke JS, Stewart A, Bezemer M (2014) Grasshopper assemblage response to surface rockiness in Afro-montane grasslands. Insect Conserv Diver 7:185–194.  https://doi.org/10.1111/icad.12044 CrossRefGoogle Scholar
  17. Desender K, Bosmans R (1998) Ground beetles (Coleoptera, Carabidae) on set-aside fields in the Campine region and their importance for nature conservation in Flanders (Belgium). Biodivers Conserv 7:1485–1493.  https://doi.org/10.1023/A:1008813102410 CrossRefGoogle Scholar
  18. Devetak D, Arnett AE (2015) Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes. Eur J Entomol 112:500–509.  https://doi.org/10.14411/eje.2015.052 CrossRefGoogle Scholar
  19. Dövényi Z (ed) (2010) Magyarország kistájainak katasztere. [Cadastre of the Hungarian Microregions]. MTA Földrajztudományi Kutatóintézet, BudapestGoogle Scholar
  20. Fekete G (1992) The holistic view of succession reconsidered. Coenoses 7:21–29Google Scholar
  21. Fekete G, Kun A, Molnár Z (1999) Chorológiai gradiensek a Duna-Tisza közi erdei flórában. (Chorological gradients of the forest flora at the Danube-Tisza mid region). Kitaibelia 4:343–346Google Scholar
  22. Fekete G, Molnár Z, Kun A, Botta-Dukát Z (2002) On the structure of the Pannonian forest steppe: grasslands on sand. Acta Zool Acad Sci Hung 48(Suppl):137–150Google Scholar
  23. Fielding DJ (2011) Oviposition site selection by the grasshoppers Melanoplus borealis and M. sanguinipes (Orthoptera: Acrididae). J Orthop Res 20:75–80.  https://doi.org/10.1665/034.020.0107 CrossRefGoogle Scholar
  24. Fielding DJ, Brusven MA (1993) Grasshopper (Orthoptera: Acrididae) community composition and ecological Distrubance on southern Idaho rangeland. Environ Entomol 22:71–81.  https://doi.org/10.1093/ee/22.1.71 CrossRefGoogle Scholar
  25. Gardiner T, Pye M, Field R, Hill J (2002) The influence of sward height and vegetation composition in determining the habitat preferences of three Chorthippus species (Orthoptera: Acrididae) in Chelmsford, Essex, UK. J Orthop Res 11:207–213. https://doi.org/10.1665/1082-6467(2002)011[0207:TIOSHA]2.0.CO;2Google Scholar
  26. Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Topp GC (eds) Methods of soil analysis, Part 4. Physical methods. Soil Science Society of America, Madison, pp 255–293Google Scholar
  27. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  28. Harz K (1969) Die Orthopteren Europas / the Orthoptera of Europe I. Series Ent. 5. Springer, The HagueCrossRefGoogle Scholar
  29. Harz K (1975) Die Orthopteren Europas / the Orthoptera of Europe II. Series Ent. 11. Springer, The HagueCrossRefGoogle Scholar
  30. Herrmann DL, Ko AE, Bhatt S, Jannot JE, Juliano SA (2010) Geographic variation in size and oviposition depths of Romalea microptera (Orthoptera: Acrididae) is associated with different soil conditions. Ann Entomol Soc Am 103:227–235.  https://doi.org/10.1603/AN09131 CrossRefGoogle Scholar
  31. Holm HT (1892) The psammophilous flora of Denmark. Bot Gaz 17:220–222CrossRefGoogle Scholar
  32. Horváth R, Magura T, Cs S, Eichardt J, Tóthmérész B (2013) Large and least isolated fragments preserve habitat specialist spiders best in dry sandy grasslands in Hungary. Biodivers Conserv 22:2139–2150.  https://doi.org/10.1007/s10531-013-0439-y CrossRefGoogle Scholar
  33. Ingrisch S (1985) Effect of hibernation lenght on termination of diapause in European Tettigoniidae (Insecta: Orthoptera). Oecologia 65:376–381.  https://doi.org/10.1007/BF00378912 CrossRefGoogle Scholar
  34. Ingrisch S (1988) Wasseraufnahme und Trockenresistenz der Eier europäischer Laubheuschrecken (Orthoptera: Tettigoniidae). Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere Abteilung für Anatomie und Ontogenie der Tiere 92:117–170Google Scholar
  35. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Die neue Brehm-Bücherei, MagdeburgGoogle Scholar
  36. Ji R, Li DM, Xie BY, Li Z, Meng DL (2006) Spatial distribution of oriental migratory locust (Orthoptera: Acrididae) egg pod populations: implications for site-specific pest management. Environ Entomol 35:1244–1248. https://doi.org/10.1603/0046-225X(2006)35[1244:SDOOML]2.0.CO;2Google Scholar
  37. Johnson DL (1989) Spatial analysis of the relationship of grasshopper outbreaks to soil classification. In: McDonald L, Manly B, Lockwood J, Logan J (eds) Estimation and analysis of insect populations. Lecture Notes in Statistics 55, pp 347–359Google Scholar
  38. Kemp WP, Sanchez NE (1987) Differences in post diapause thermal requirements for eggs of two rangeland grasshoppers. Can Entomol 119:653–661.  https://doi.org/10.4039/Ent119653-7 CrossRefGoogle Scholar
  39. Kenyeres Z, Bauer N, Rácz IA (2014) Local and global factors in organization of Central-European orthopteran assemblages. Russ J Ecol 45:375–383.  https://doi.org/10.1134/S1067413614050075
  40. Kerner A (1863) Das Pflanzenleben der Donauländer. Verlag der Wagner’schen Universitäts-Buchhandlung, InnsbruckGoogle Scholar
  41. Kovács-Láng E, Kertész M, Kröel-Dulay Gy, Mika J, Rédei T, Rajkai K, Hahn I, Bartha S (1999) Effects of a climate gradient on sand vegetation. In: Kovács-Láng E, Molnár E, Kröel-Dulay Gy, Barabás S (eds) Long Term Ecological Research in the Kiskunság, Hungary. Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót, pp 30–32Google Scholar
  42. Kovács-Láng E, Kröel-Dulay G, Kertész M, Fekete G, Bartha S, Mlka J, Dobi-Wantuch I, Rédei T, Rajkai KG, Hahn I (2000) Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30:385–407CrossRefGoogle Scholar
  43. Krištín A, Kaňuch P, Sárossy M (2004) Grasshoppers and crickets (Orthoptera) and mantids (Mantodea) of sand dunes in the Danube lowland (S Slovakia). Linzer Biol Beitr 36:273–286Google Scholar
  44. Krištín A, Kanuch P, Fabriciusova V, Gavlas V (2009) Responses on habitat and global change of some Mediterranean orthopteran species occurring in blown sands in Central Europe. In: 10th International Congress of Orthopterology, Metaleptea, Special Conference Issue, Orthopterists’ Society and Akdeniz University, p 42Google Scholar
  45. Krištín A, Balla M, Fabriciusová V, Hrúz V, Kaňuch P (2011) Orthoptera and Mantodea in fragments of seminatural habitats in lowlands of SE Slovakia and SW Transcarpathian Ukraine. Articulata 26:109–121Google Scholar
  46. Ljungberg H (2002) Important habitats for red-listed ground beetles in Sweden. Entomol Tidskr 123:167–185Google Scholar
  47. Lockwood JA, Hong-Chang L, Dodd JL, Williams SE (1994) Comparison of grasshopper (Orthoptera: Acrididae) ecology on the grasslands of the Asian steppe in Inner Mongolia and the Great Plains of North America. J Orthop Res (2):4–14.  https://doi.org/10.2307/3503601
  48. Meats A (1970) The relation of water availability and osmotic gradients to egg development in the locusts Locusta migratoria migratorioides Reiche & Fairmaire and Schistocerca gregaria Forskål. Proc R Entomol Soc Lond 45:73–79.  https://doi.org/10.1111/j.1365-3032.1970.tb00702.x Google Scholar
  49. Metzler EH (2014) The remarkable endemism of moths at White Sands National Monument in New Mexico, USA, with special emphasis on Gelechioidea (Lepidoptera). J Asia Pac Biodivers 7:1–5.  https://doi.org/10.1016/j.japb.2014.02.001 CrossRefGoogle Scholar
  50. Moriarty F (1969) Water uptake and embryonic development in eggs of Chorthippus brunneus Thunberg (Saltatoria: Acrididae). J Exp Biol 50:327–333Google Scholar
  51. Nerney NJ, Hamilton AG (1969) Effects of rainfall on range forage and populations of grasshoppers, San Carlos apache Indian reservation. Ariz J Econ Entomol 62:329–333.  https://doi.org/10.1093/jee/62.2.329 CrossRefGoogle Scholar
  52. Ni SX, Wang JC, Jiang JJ, Zha Y (2007) Rangeland grasshoppers in relation to soils in the Qinghai Lake region, China. Pedosphere 17:84–89.  https://doi.org/10.1016/S1002-0160(07)60011-3 CrossRefGoogle Scholar
  53. Ödman AM, Mårtensson LM, Sjöholm C, Olsson PA (2011) Immediate responses in soil chemistry, vegetation and ground beetles to soil perturbation when implemented as a restoration measure in decalcified sandy grassland. Biodivers Conserv 20:3039–3058.  https://doi.org/10.1007/s10531-011-0108-y CrossRefGoogle Scholar
  54. Olsson PA, Sjöholm C, Ödman AM (2014) Soil disturbance favours threatened beetle species in sandy grasslands. J Insect Conserv 18:827–835.  https://doi.org/10.1007/s10841-014-9689-6 CrossRefGoogle Scholar
  55. Quinn MA, Kepner RL, Walgenbach DD, Bohls RA, Pooler PD, Foster R, Reuter N, Swain JL (1991) Habitat characteristics and grasshopper community dynamics on mixed-grass rangeland. Can Entomol 123:89–105.  https://doi.org/10.4039/Ent12389-1 CrossRefGoogle Scholar
  56. Rácz I (1998) Biogeographical survey of the Orthoptera Fauna in central part of the Carpathian Basin (Hungary): Fauna types and community types. Articulata 13:53–69Google Scholar
  57. Reynolds HL, Haubensak KA (2008) Soil fertility, heterogeneity, and microbes: towards an integrated understanding of grassland structure and dynamics. Appl Veg Sci 12:33–44.  https://doi.org/10.1111/j.1654-109X.2009.01020.x CrossRefGoogle Scholar
  58. Samways MJ (1997) Conservation biology of Orthoptera. In: Gangwere SK, Muralirangan MC, Muralirangan M (eds) Bionomics of grasshoppers, Katydids and their Kin. CAB International, Wallingford, pp 481–496Google Scholar
  59. Schell SP, Lockwood JA (1997) Spatial analysis of ecological factors related to grasshopper population dynamics in Wyoming. Environ Entomol 26:1343–1353CrossRefGoogle Scholar
  60. Şenlikci A, Doğu M, Eren E, Çetinkaya E, Karadağ S (2015) Pressure calcimeter as a simple method for measuring the CaCO3 content of soil and comparison with Scheibler calcimeter. Soil-Water J Spec Issue:24–28Google Scholar
  61. Sharma AK (1984) Observations on the mating and oviposition behaviour of Chrotogonus trachypterus blanch. (Orthoptera: Acrididae) in relation to different types of soil and moisture levels. Bull Pure Appl Sci 3A:76–79Google Scholar
  62. Spalding VM (1909) Distribution and movements of desert plants. Carnegie Institution of Washington Publication 113, Washington DCGoogle Scholar
  63. Stauffer TW, Whitman DW (2007) Divergent oviposition behaviors in a desert vs. a marsh grasshopper. J Orthop Res 16:103–114. https://doi.org/10.1665/1082-6467(2007)16[103:DOBIAD]2.0.CO;2Google Scholar
  64. Stebaev IV, Nikitina SI (1976) Behaviourial patterns of different life forms of grasshoppers from steppes and semideserts of Tuva. Zool Zh 55:715–720Google Scholar
  65. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Biometris, WageningenGoogle Scholar
  66. Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178.  https://doi.org/10.1007/s10531-012-0398-8 CrossRefGoogle Scholar
  67. Willott SJ (1997) Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct Ecol 11:705–713.  https://doi.org/10.1046/j.1365-2435.1997.00135.x CrossRefGoogle Scholar
  68. Willott SJ, Hassall M (1998) Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Funct Ecol 12:232–241.  https://doi.org/10.1046/j.1365-2435.1998.00180.x CrossRefGoogle Scholar
  69. Woodman JD (2017) Effects of substrate salinity on oviposition, embryonic development and survival in the Australian plague locust, Chortoicetes terminifera (Walker). J Insect Physiol 96:9–13.  https://doi.org/10.1016/j.jinsphys.2016.10.001 CrossRefGoogle Scholar
  70. Wünsch Y, Schirmel J, Fartmann T (2011) Conservation management of coastal dunes for Orthoptera has to consider oviposition and nymphal preferences. J Insect Conserv 16:1–10.  https://doi.org/10.1007/s10841-011-9436-1 Google Scholar
  71. Zuo XA, Knops JMH, Zhao XY, Zhao HL, Zhang TH, Li YQ, Guo YR (2012) Indirect drivers of plant diversity-productivity relationship in semiarid sandy grasslands. Biogeosciences 9:1277–1289.  https://doi.org/10.5194/bg-9-1277-2012 CrossRefGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Acrida Conservational Research L.PTapolcaHungary
  2. 2.Department of Physical Geography and GeoinformaticsUniversity of DebrecenDebrecenHungary
  3. 3.Department of Zoology, Savaria CentreEötvös Loránd UniversitySzombathelyHungary
  4. 4.Fertő-Hanság National Park DirectorateSarródHungary
  5. 5.Department of BotanyHungarian Natural History MuseumBudapestHungary

Personalised recommendations