Advertisement

Biologia

, Volume 74, Issue 5, pp 573–581 | Cite as

The relationship between selected VDR gene polymorphisms and susceptibility to inflammatory bowel disease in Slovak population

  • Martina StuchlíkováEmail author
  • Tibor Hlavatý
  • František Ďuriš
  • Juraj Javor
  • Anna Krajčovičová
  • Daniel Kuba
  • Katarína Šoltýs
  • Hana Drahovská
  • Ján Turňa
  • Stanislav Stuchlík
Original Article
  • 32 Downloads

Abstract

Ulcerative colitis (UC) and Crohn’s disease (CD) are the two main forms of inflammatory bowel disease (IBD). IBD is thought to result from an inappropriate and continuing inflammatory response to commensal microbes in a genetically susceptible host. One of hundreds independent SNPs connected to IBD pathogenesis are considered polymorphisms in the gene for vitamin D receptor (VDR). The purpose of the study was to investigate the association of VDR gene polymorphisms FokI, BsmI, ApaI, TaqI with disease susceptibility in 86 Slovak UC and 122 CD patients and in 155 controls. The distribution of VDR (FokI, BsmI, ApaI and TaqI) alleles and genotype variants in Slovak healthy population is analogous to those of other Caucasoid populations. The distributions of FokI genotypes in CD patients showed significant Hardy-Weinberg equilibrium (HWE) deviation (P = 0.0062) with considerable shortage of heterozygosity compared to controls (36.89 vs. 47.67%; OR = 0.5479; 95%CI = 0.3376–0.8892). We did not find any significant association of FokI, BsmI, ApaI and TaqI variants with localisation of UC or CD manifestation as well as the age of onset in case of Crohn’s disease. Our study showed for the first time in Slovak population that the FokI polymorphism can be involved in susceptibility to Crohn’s disease development. However, we did not find any association of FokI, BsmI, ApaI and TaqI SNPs with clinical features of CD and UC.

Keywords

VDR gene polymorphisms Vitamin D Inflammatory bowel disease Crohn’s disease Ulcerative colitis 

Abbreviations

CD

Crohn’s disease

IBD

inflammatory bowel disease

GIT

gastrointestinal tract

GWAS

genome-wide association studies

HWE

Hardy-Weinberg equilibrium

RFLP

restriction fragment length polymorphism

SNPs

single nucleotide polymorphism(s)

UC

Ulcerative colitis

VD

vitamin D

VDR

vitamin D Receptor

Notes

Acknowledgements

This publication is supported by grant APVV-0672-11 of the Slovak Research and Development Agency and is also result of the projects implementation: (ITMS 26240120027) and (ITMS 26240220048) supported by the Operational Programme of R&D funded by the European Regional Development Fund. Authors would like to thank also to Dr. D. Baláková for providing the part of the set of blood DNA samples from CD patients.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Aparna AB, Namrata L, Smita SK, Sandeep SC, Sarita SB, Bibhu R (2009) Frequency of fokI and taqI polymorphism of vitamin D receptor gene in Indian population and its association with 25-hydroxyvitamin D levels. Indian J Hum Genet 15:108–113CrossRefGoogle Scholar
  2. Arai H, Miyamoto K, Taketani Y et al (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bonemineral density in Japanese women. J Bone Miner Res 12:915–921.  https://doi.org/10.1359/jbmr.1997.12.6.915 CrossRefGoogle Scholar
  3. Bentley RW, Keown D, Merriman TR, Raj KM, Gearry RB, Barclay ML, Roberts RL, Day AS (2011) Vitamin D receptor gene polymorphism associated with inflammatory bowel disease in New Zealand males. Aliment Pharmacol Ther 33:855–856.  https://doi.org/10.1111/j.1365-2036.2011.04588.x CrossRefGoogle Scholar
  4. Čierny D, Michalik J, Škereňová M, Kantorová M, Sivák Š, Javor J, Kurča E, Dobrota D, Lehotský J (2016) ApaI, BsmI and TaqI VDR gene polymorphisms in association with multiple sclerosis in Slovaks. Neurol Res 38:678–684.  https://doi.org/10.1080/01616412.2018.1456711 CrossRefGoogle Scholar
  5. Colin EM, Weel AE, Uitterlinden AG, Buurman CJ, Birkenhäger JC, Pols HA, van Leeuwen JP (2000) Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D3. Clin Endocrinol 52:211–216.  https://doi.org/10.1186/bcr1994 CrossRefGoogle Scholar
  6. Cox MB, Ban M, Bowden NA, Baker A, Scott RJ, Lechner-Scott J (2012) Potential association of vitamin D receptor polymorphism TaqI with multiple sclerosis. Mult Scler 18:16–22.  https://doi.org/10.1177/1352458511415562 CrossRefGoogle Scholar
  7. Dresner-Pollak R, Ackerman Z, Eliakim R, Karban A, Chowers Y, Fidder HH (2004) The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet Test 8:417–420.  https://doi.org/10.1089/gte.2004.8.417 CrossRefGoogle Scholar
  8. Enas O, Fatme AA, Gehad E, Afrozul H, Rajaa M, Habiba AS (2015) Frequency of rs731236 (Taql), rs2228570 (Fok1) of vitamin-D receptor (VDR) gene in Emirati healthy population. Meta Gene 6:49–52.  https://doi.org/10.1016/j.mgene.2015.09.001 CrossRefGoogle Scholar
  9. Fang F, Wang J, Pan J, Su GH, Xu LX, Li G (2015) Relationship between vitamin D (1,25-dihydroxyvitamin D3) receptor gene polymorphisms and primary biliary cirrhosis risk: a meta-analysis. Genet Mol Res 14:981–988.  https://doi.org/10.4238/2015.February.6.1 CrossRefGoogle Scholar
  10. Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42:1118–1125.  https://doi.org/10.1038/ng.717 CrossRefGoogle Scholar
  11. Gross C, Krishnan AV, Malloy PJ, Eccleshall TR, Zhao XY, Feldman D (1998) The vitamin D receptor gene start codon polymorphism: a functional analysis of FokI variants. J Bone Miner Res 13:1691–1669.  https://doi.org/10.1359/jbmr.1998.13.11.1691 CrossRefGoogle Scholar
  12. Hlavaty T, Krajcovicova A, Koller T, Toth J, Nevidanska M, Huorka M, Payer J (2014) Higher vitamin D serum concentration increases health related quality of life in patients with inflammatory bowel diseases. World J Gastroenterol 20:15787–15796.  https://doi.org/10.3748/wjg.v20.i42.15787 CrossRefGoogle Scholar
  13. Hlavaty T, Krajcovicova A, Payer J (2015) Vitamin D therapy in inflammatory bowel diseases who, in what form, and how much? J Crohn's Colitis 9:198–209.  https://doi.org/10.1093/ecco-jcc/jju004 CrossRefGoogle Scholar
  14. Hughes DJ, McManus R, Neary P, O'morain C, O'sullivan M (2011) Common variation in the vitamin D receptor gene and risk of inflammatory bowel disease in an Irish case-control study. Eur J Gastroenterol Hepatol 23:807–812.  https://doi.org/10.1097/MEG.0b013e328349283e CrossRefGoogle Scholar
  15. Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124.  https://doi.org/10.1038/nature11582 CrossRefGoogle Scholar
  16. Jurutka PW, Remus LS, Whitfield GK et al (2000) The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 14:401–420.  https://doi.org/10.1210/mend.14.3.0435 CrossRefGoogle Scholar
  17. Li YJ, Tang YW, Shi YQ et al (2014) Polymorphisms in the vitamin D receptor gene and risk of primary biliary cirrhosis: a meta-analysis. J Gastroenterol Hepatol 4:706–715.  https://doi.org/10.1111/jgh.12443 CrossRefGoogle Scholar
  18. Liu CC, Huang CH, Wu WJ, Huang SP, Chou YH, Li CC, Chai CY, Wu MT (2007) Association of vitamin D receptor (Fok-I) polymorphism with the clinical presentation of calcium urolithiasis. BJU Int. 99:1534–1538.  https://doi.org/10.1111/j.1464-410X.2007.06792.x
  19. Liu JZ, van Sommeren S, Huang H et al (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979–986.  https://doi.org/10.1038/ng.3359 CrossRefGoogle Scholar
  20. Lukas M (2010) Inflammatory bowel disease as a risk factor for colorectal cancer. Dig Dis 28:619–624.  https://doi.org/10.1159/000320276 CrossRefGoogle Scholar
  21. Mao S, Huang S (2014) Association between vitamin D receptor gene BsmI, FokI, ApaI and TaqI polymorphisms and the risk of systemic lupus erythematosus: a meta-analysis. Rheumatol Int 34:381–388.  https://doi.org/10.1007/s00296-013-2898-6 CrossRefGoogle Scholar
  22. Martin K, Radlmayr M, Borchers R, Heinzlmann M, Folwaczny C (2002) Candidate genes colocalized to linkage regions in inflammatory bowel disease. Digestion 66:121–126.  https://doi.org/10.1159/000065592 CrossRefGoogle Scholar
  23. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367:284–287.  https://doi.org/10.1038/367284a0 CrossRefGoogle Scholar
  24. Naderi N, Farnood A, Habibi M et al (2008) Association of vitamin D receptor gene polymorphisms in Iranian patients with inflammatory bowel disease. J Gastroenterol Hepatol 12:1816–1822.  https://doi.org/10.1111/j.1440-1746.2008.05525.x CrossRefGoogle Scholar
  25. Nejentsev S, Godfrey L, Snook H et al (2004) Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Hum Mol Genet 13:1633–1639.  https://doi.org/10.1093/hmg/ddh169 CrossRefGoogle Scholar
  26. Noble CL, McCullough J, Ho W et al (2008) Low body mass not vitamin D receptor polymorphisms predict osteoporosis in patients with inflammatory bowel disease. Aliment Pharmacol Ther 27:588–596.  https://doi.org/10.1111/j.1365-2036.2008.03599.x CrossRefGoogle Scholar
  27. Pei FH, Wang YJ, Gao SL, Liu BR, Du YJ, Liu W, Yu HY, Zhao LX, Chi BR (2011) Vitamin D receptor gene polymorphism and ulcerative colitis susceptibility in Han Chinese. J Dig Dis 12:90–98.  https://doi.org/10.1111/j.1751-2980.2011.00483.x CrossRefGoogle Scholar
  28. Pluskiewicz W, Zdrzałek J, Karasek D (2009) Spine bone mineral density and VDR polymorphism in subjects with ulcerative colitis. J Bone Miner Metab 27:567–573.  https://doi.org/10.1007/s00774-009-0072-8 CrossRefGoogle Scholar
  29. Qin WH, Wang HX, Qiu JL et al (2014) A meta-analysis of association of vitamin D receptor BsmI gene polymorphism with the risk of type 1 diabetes mellitus. J Recept Signal Transduct Res 34:372–377.  https://doi.org/10.3109/10799893.2014.903420 CrossRefGoogle Scholar
  30. Raimondi S, Johansson H, Maisonneuve P, Gandini S (2009) Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 30:1170–1180.  https://doi.org/10.1093/carcin/bgp103 CrossRefGoogle Scholar
  31. Raimondi S, Pasquali E, Gnagnarella P, Serrano D, Disalvatore D, Johansson HA, Gandini S (2014) BsmI polymorphism of vitamin D receptor gene and cancer risk: a comprehensive meta-analysis. Mutat Res 769:17–34.  https://doi.org/10.1016/j.mrfmmm.2014.06.001
  32. Rasool S, Kadla SA, Khan T et al (2013) Association of a VDR gene polymorphism with risk of colorectal cancer in Kashmir. Asian Pac J Cancer Prev 14:5833–5837.  https://doi.org/10.7314/APJCP.2013.14.10.5833 CrossRefGoogle Scholar
  33. Satsangi J, Silverberg MS, Vermeire S, Colombel J-F (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55:749–753.  https://doi.org/10.1136/gut.2005.082909 CrossRefGoogle Scholar
  34. Shaukat A, Virnig DJ, Salfiti NI, Howard DH, Sitaraman SV, Liff JM (2011) Is inflammatory bowel disease an important risk factor among older persons with colorectal Cancer in the United States? A population-based case-control study. Dig Dis Sci 56:2378–2383.  https://doi.org/10.1007/s10620-011-1632-z CrossRefGoogle Scholar
  35. Simmons JD, Mullighan C, Welsh KI, Jewell DP (2000) Vitamin D receptor gene polymorphism: association with Crohn's disease susceptibility. Gut 47:211–214.  https://doi.org/10.1136/gut.47.2.211 CrossRefGoogle Scholar
  36. Stio M, Retico L, Annese V, Bonanomi AG (2016) Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand J Gastroenterol 51:1193–1199.  https://doi.org/10.1080/00365521.2016.1185463 CrossRefGoogle Scholar
  37. Terjek O, Csontos AA, Lorinczy K, Bors A, Torday A, Lakatos PL, Miheller P (2014) Relationship between clinical characteristics and vitamin D receptor polymorphisms in Crohn's disease. Poster presentation, 9th congress of ECCO, Copenhagen, Denmark. Feb 2014:20–22Google Scholar
  38. Thakkinstian A, D'Este C, Attia J (2004) Haplotype analysis of VDR gene polymorphisms: a meta-analysis. Osteoporos Int 15:729–734.  https://doi.org/10.1007/s00198-004-1601-x CrossRefGoogle Scholar
  39. Tizaoui K, Hamzaoui K (2015) Association between VDR polymorphisms and rheumatoid arthritis disease: systematic review and updated meta-analysis of case-control studies. Immunobiology 220:807–816.  https://doi.org/10.1016/j.imbio.2014.12.013 CrossRefGoogle Scholar
  40. Touvier M, Chan DS, Lau R et al (2011) Meta-analyses of vitamin d intake, 25-hydroxyvitamin d status, vitamin d receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomark Prev 20:1003–1016.  https://doi.org/10.1158/1055-9965.EPI-10-1141 CrossRefGoogle Scholar
  41. Triantafillidis JK, Nasioulas G, Kosmidis PA (2009) Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res 29:2727–2737Google Scholar
  42. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP (2004) Genetics and biology of vitamin D receptor polymorphisms. Gene 338:143–156.  https://doi.org/10.1016/j.gene.2004.05.014 CrossRefGoogle Scholar
  43. Valdivielso JM, Fernandez E (2006) Vitamin D receptor polymorphisms and diseases. Clin Chim Acta 371:1–12.  https://doi.org/10.1016/j.cca.2006.02.016 CrossRefGoogle Scholar
  44. van Etten E, Verlinden L, Giulietti A et al (2007) The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol 37:395–405.  https://doi.org/10.1002/eji.200636043 CrossRefGoogle Scholar
  45. Wada K, Tanaka H, Maeda K et al (2009) Vitamin D receptor expression is associated with colon cancer in ulcerative colitis. Oncol Rep 22:1021–1025.  https://doi.org/10.3892/or_00000530 Google Scholar
  46. Wang G, Li BQ, Zhou HH (2008) Polymorphism of vitamin D receptor Fok I and colorectal cancer risk in Chinese. Zhong Nan Da Xue Bao Yi Xue Ban 33:399–403Google Scholar
  47. Wang L, Wang ZT, Hu JJ, Fan R, Zhou J, Zhong J (2014) Polymorphisms of the vitamin D receptor gene and the risk of inflammatory bowel disease: a meta-analysis. Genet Mol Res 13:2598–2610.  https://doi.org/10.4238/2014.April.8.2 CrossRefGoogle Scholar
  48. Wang J, Thingholm LB, Skiecevičienė J et al (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48(11):1396–1406.  https://doi.org/10.1038/ng.3695
  49. Wilkinson RJ, Llewelyn M, Toossi Z et al (2000) Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355:618–621.  https://doi.org/10.1016/S0140-6736(99)02301-6
  50. Xia S, Xia X, Wang W et al (2014) Associations of ulcerative colitis with vitamin D receptor gene polymorphisms and serum levels of 25-hydroxyl vitamin D. Zhonghua Yi Xue Za Zhi 94:1060–1066.  https://doi.org/10.3760/cma.j.issn.0376-2491.2014.14.006 Google Scholar
  51. Xia S, Lin X, Guo M, Jiang L et al (2015) An analysis of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D levels in patients with Crohn's disease. Zhonghua Nei Ke Za Zhi 54:601–606.  https://doi.org/10.3760/cma.j.issn.0578-1426.2015.07.007 Google Scholar
  52. Xue LN, Xu KQ, Zhang W, Wang Q, Wu J, Wang XY (2013) Associations between vitamin D receptor polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a meta-analysis. Inflamm Bowel Dis 19:54–60.  https://doi.org/10.1002/ibd.22966 CrossRefGoogle Scholar
  53. Zhao DD, Yu DD, Ren QQ, Dong B, Zhao F, Sun YH (2017) Association of vitamin D receptor gene polymorphisms with susceptibility to childhood asthma: a meta-analysis. Pediatr Pulmonol 52:423–249.  https://doi.org/10.1002/ppul.23548 CrossRefGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Martina Stuchlíková
    • 1
    • 2
    Email author
  • Tibor Hlavatý
    • 3
  • František Ďuriš
    • 4
  • Juraj Javor
    • 5
  • Anna Krajčovičová
    • 3
  • Daniel Kuba
    • 2
  • Katarína Šoltýs
    • 1
  • Hana Drahovská
    • 1
  • Ján Turňa
    • 1
    • 6
  • Stanislav Stuchlík
    • 1
    • 6
  1. 1.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.National Transplantation OrganizationBratislavaSlovakia
  3. 3.Department of Internal Medicine, Faculty of Medicine, Division of GastroenterologyComenius University Bratislava and University hospital BratislavaBratislavaSlovakia
  4. 4.Department of Computer Science, Faculty of Mathematics, Physics and InformaticsComenius University in BratislavaBratislavaSlovakia
  5. 5.Department of Immunology, Faculty of MedicineComenius UniversityBratislavaSlovakia
  6. 6.Comenius UniversityBratislavaSlovakia

Personalised recommendations