Advertisement

Biologia

, Volume 74, Issue 7, pp 733–750 | Cite as

Ecology and species distribution pattern of Soldanella sect. Soldanella (Primulaceae) within vegetation types in the Carpathians and the adjacent mountains

  • Milan ValachovičEmail author
  • Eliška Štubňová
  • Dušan Senko
  • Judita Kochjarová
  • Gheorghe Coldea
Original Article
  • 65 Downloads

Abstract

Molecular plant taxonomy methods have helped to introduce new findings to the original concepts of plant evolution in comparison to traditional classification based on morphological, karyological, and ecological characters. The objective of our study was to determine if a new taxonomic concept developed for the Soldanella genus would also change the traditional knowledge of coenological relations within plant communities and distribution patterns of habitats. Taxa in the genus Soldanella sect. Soldanella from the Carpathian Mts and the adjacent region in the North-Eastern Alps and Bohemian Massif were selected as model representatives. This territory includes the largest concentration of study taxa, namely S. carpatica, S. hungarica, S. major, S. marmarossiensis agg., S. montana, S. oreodoxa, and potentially also some others. However, the ecological characteristics published to date are in conflict with our field observations. Two datasets were combined for the purpose of our study, one of which was based on older and published phytocoenological relevés that are now widely available through the European Vegetation Archive (EVA), and the other, which is based on our own data, sampled throughout the distribution area, which specifically targeted the type localities as well as peripheral localities. Analysis of phytocoenological relevés significantly extended the older knowledge about the habitat preferences of the studied species. Similarly, due to our detailed population sampling, a view of the geographical distribution and expansion of snowbell distribution boundaries has been added, especially for the Eastern and Southern Carpathian taxa. In revising the older knowledge, the altitudinal range of the selected species must be revised as well. In the majority of cases, our findings broadened the existing knowledge on altitudinal divergence, ecological behaviour and the phytogeographical distribution of the study species. Snowbells considered as typical montane elements in forest habitats were also found at much higher alpine altitudes, e.g. S. carpatica, S. hungarica, S. major, and S. marmarossiensis agg., and vice versa, with taxa considered to be exclusively inhabiting the alpine belt growing in contact forest habitats as well. The spectrum of the studied habitats and plant units show wide ecological valence in the majority of Soldanella species; however, some particular preferences for different substrate types, altitudinal belts, or habitat types were indicated.

Keywords

Autecology Habitats Mid-altitudinal plants Phytocoenological relations Snowbells Bohemian massif North-eastern Alps 

Notes

Acknowledgements

The study was supported by VEGA project No. 088/15. The paper could not have been realised without the large dataset from the European Vegetation Archive (EVA), therefore we first of all thank the custodians of the Austrian, Czech and Polish national databases (Wolfgang Willner, Milan Chytrý and Zygmunt Kącki). The significant inputs to produce distribution maps were provided by Jiří Danihelka and Milan Štech (CZ), Manfred A. Fischer (AT), Bogdan I. Hurdu (RO), Andrew Novikoff (UA) and Kiril Vassilev (BG). We thank Mário Duchoň, Michal Hájek, Petra Hájková, Iva Hodálova, Milan Chytrý, Ján Kliment, Jaromír Kučera, Laco Mucina, Eva Reháková, Zita Rýdzyková, Marek Slovák, Adrian Stoica, Ingrid Turisová, Peter Turis, Jana Uhlířová, Katarína Vantarová and Milan Zajac for field assistance, Markéta Táborská and Rudolf Šoltés for identification of bryophytes, our colleagues Ivan Pišút and Alica Košuthová for identification of the lichens. The language was corrected by American Journal Experts (https://www.aje.com/en). We thank anonymous reviewers and the Associate Editor for their valuable suggestions and comments on this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11756_2019_200_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22.8 kb)
11756_2019_200_MOESM2_ESM.docx (23 kb)
ESM 2 (DOCX 23 kb)
11756_2019_200_MOESM3_ESM.docx (25 kb)
ESM 3 (DOCX 24.9 kb)

References

  1. Alexiu V (1998) Vegetația masivului Iezer-Păpușa (Munții Făgăraș). Studiu fitocenologic. Ed. Cultura Pitești. 362 pp. [in Romanian]Google Scholar
  2. Anderberg AA, Trift I, Källersjö M (2000) Phylogeny of Cyclamen L. (Primulaceae): evidence from morphology and sequence data from the internal transcribed spacers of nuclear ribosomal DNA. Pl. Syst. Evolution 220(3):147–160Google Scholar
  3. APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 181:1–20.  https://doi.org/10.1111/boj.12385
  4. Beldie A (1967) Flora și vegetația munților Bucegi. Ed. Acad. București. 578 pp. [in Romanian]Google Scholar
  5. Bellino A, Bellino L, Baldantoni D, Saracino A (2015) Evolution, ecology and systematics of Soldanella (Primulaceae) in the southern Apennines (Italy). BMC Evol Biol 15(1):158.  https://doi.org/10.1186/s12862-015-0433-y CrossRefGoogle Scholar
  6. Bölöni J, Molnár Z, Kun A (2011) Habitats in Hungaria. Vácratót. 439 pp. ISBN 978-963-8391-51-3. [in Hungarian]Google Scholar
  7. Borbás V (1901) Über die Soldanella-Arten. Beih Bot Centralb 10:279–283Google Scholar
  8. Boșcaiu N (1971) Flora și vegetația munților Țarcu, Godeanu și Cernei. Ed Acad București. 494 pp. [in Romanian]Google Scholar
  9. Boucher FC, Zimmermann NE, Conti E (2016) Allopatric speciation with little niche divergence in common among alpine Primulaceae. J Biogeogr 43:591–602.  https://doi.org/10.1111/jbi.12652
  10. Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, Springer-Verlag, Wien and New YorkCrossRefGoogle Scholar
  11. Buia Al ed (1962) Pajiștile din masivul Parâng și îmbunătățirea lor. Ed. Agro-Silvică București. [in Romanian]Google Scholar
  12. Chytrý M ed (2013) Vegetation of the Czech republic. 4. Forest and scrub vegetation. Academia, Praha. 551 pp. ISBN 978-80-200-2299-8. [in Czech]Google Scholar
  13. Chytrý M, Hennekens SM, Jiménez-Alfaro B et al (2016) European vegetation archive (EVA): an integrated database of European vegetation plots. Appl Veget Sci 19:173–180CrossRefGoogle Scholar
  14. Coldea Gh (1985) Phytozönologischen Studium der Krummholzgebüschen in der Südostkarpaten. Feddes Repert. 96(5-6):65–72Google Scholar
  15. Coldea Gh (1990) The Rodna mountains. A geobotanical study. Ed. Acad. Rom., Bucharest. 183 pp. ISBN 973-27-0106-4. [in Romanian]Google Scholar
  16. Coldea G (2003) The alpine flora and vegetation of the south-eastern Carpathians. Ecological Studies 1(167):65–72Google Scholar
  17. Coldea Gh Ed., Sanda V, Popescu A, Ştefan N (1997) Les associations végétales de Roumanie. Tome 1. Les associations herbacées naturalles. Presess Universitaires de Cluj. 261 pp.Google Scholar
  18. Coldea G, Stoică IA, Puşcaş M, Ursu T, Oprea A, IntraBioDiv Consortium (2009) Alpine–subalpine species richness of the Romanian Carpathians and the current conservation status of rare species. Biodivers Conserv 18:1441–1458.  https://doi.org/10.1007/s10531-008-9488-z
  19. Coldea Gh Ed., Indreica A, Oprea A (2015) Les associations végétales de Roumanie. Tome 3. Les associations forestiéres et arbustives. Presa Universitară Clujeană & Accent. 281 pp.Google Scholar
  20. Coldea Gh. Ed., Sanda V, Popescu A, Ştefan N (2017) Les associations végétales de Roumanie. Tome 1. Les associations herbacées naturalles. 2th ed. Presa Universitară Clujeană & Accent ISBN 978-606-561-177-1. 270 pp.Google Scholar
  21. de Vos JM, Hughes CE, Schneeweiss GM, Moore BR, Conti E (2014) Heterostyly accelerates diversification via reduced extinction in primroses. Proc R Soc B 281.  https://doi.org/10.1098/rspb.2014.0075
  22. Douda J (2008) Formalized classification of the vegetation of alder carr and floodplain forests in the Czech Republic. Preslia 80:199–224Google Scholar
  23. Dúbravcová Z (2007) Salicetea herbaceae. Br.-Bl. 1948. In: Kliment J, Valachovič M (eds) Rastlinné spoločenstvá Slovenska 4. Vysokohorská vegetácia. Veda, Bratislava, pp 253–281 [in Slovak]Google Scholar
  24. Duchoň M (2018) Communities of relic calciphilous pine forests and xero-thermophilous oak forests in the Nitrické vrchy Mts. Bull. Slov. Bot. Spoločn 40/2:135–155 [in Slovak]Google Scholar
  25. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. 6. Auflage. Verlag Eugen Ulmer, Stuttgart, 1334 ppGoogle Scholar
  26. Favarger C (1972) Endemism in the montane floras of Europe. In: Valentine DH (ed) Taxonomy, phytogeography and evolution. London Academic Press, London, pp 191–204Google Scholar
  27. Givnish TJ (2010) Ecology of plant speciation. Taxon 59(5):1326–1366CrossRefGoogle Scholar
  28. Goliašová K, Michalková E (2016) Flóra Slovenska VI/4. Veda, Vydavateľstvo SAVGoogle Scholar
  29. Hendrych R (1980) Material and notes about the geography of the highly stenochoric to monotopic endemic species of the European flora. Acta Univ Carol Biol 3–4:335–372Google Scholar
  30. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comparison data base management system for vegetation data. J Veg Sci 12:589–591CrossRefGoogle Scholar
  31. Hill MO (1979) TWINSPAN - a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University. 90 pp.Google Scholar
  32. Hurdu B-I, Escalante T, Pușcaș M, Novikoff A, Bartha L, Zimmermann NE (2016) Exploring the different facets of plant endemism in the south-eastern Carpathians: a manifold approach for the determination of biotic elements, centers and areas of endemism. Biol J Linnean Soc 119:649–672.  https://doi.org/10.1111/bij.12902
  33. Källersjö M, Bergqvist G, Anderberg AA (2000) Generic realigment in Primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am J Bot 87:1325–1341CrossRefGoogle Scholar
  34. Kaplan Z, Danihelka J, Štěpánková J, Bureš P, Zázvorka J, Hroudová Z, Ducháček M, Grulich V, Řepka R, Dančák M, Prančl J, Šumberová K, Wild J, Trávníček B (2015) Distributions of vascular plants in the Czech Republic. Part 1. Preslia 87:417–500Google Scholar
  35. Kliment J, Ujházy K (2014) Nardetea strictae Rivas Goday in Rivas Goday et Rivas-Mart. 1963. In: Hegedüšová VK, Škodová I (eds) Rastlinné spoločenstvá Slovenska 5. Travinno-bylinná vegetácia. Veda, Bratislava, pp 385–444 [in Slovak]Google Scholar
  36. Kliment J, Valachovič M (eds) (2007) Rastlinné spoločenstvá Slovenska 4. Vysokohorská vegetácia. Veda, Bratislava, p 386 [in Slovak]Google Scholar
  37. Kliment J, Turis P, Janišová M (2016) Taxa of vascular plants endemic to the Carpathian Mts. Preslia 88:19–76Google Scholar
  38. Klimuk YV, Miskevych UD, Yakushenko DM, Chorney, II, Budzak VV, Nyporko SO, Shpilchak, MB, Chernyavsky MV, Tokaryouk AI, Oleksiv TM, Tymchuk YY, Solomakha VA, Solomakha TD, Mayor RV (2006) Nature reserve Gorgany. Plant world. Kiev. 399 pp. ISBN 966-306-125-X. [in Ukrainian]Google Scholar
  39. Kochjarová J, Kučera J, Slovák M, Štubňová E (2016) 3. Soldanella L. In: Goliášová K, Michalková E (eds) Flóra Slovenska VI/4. Veda, Bratislava, pp 645–659 LondonGoogle Scholar
  40. Kočí M (2007) Subalpine tall-forb and deciduous-shrub vegetation. In: Chytrý M. (ed), vegetation of the Czech republic. 1. Grassland and heartland vegetation. Academia, Praha, pp 91–131 [in Czech]Google Scholar
  41. Korzeniak J (2016) Mountain Nardus stricta grasslands as a relic of past farming – the effect of grazing abandonment in relation to elevation and spatial scale. Folia Geobot 51:93–113CrossRefGoogle Scholar
  42. Kress A (1984) Chromosomenzahlungen an verschiedenen Primulaceen. Soldanella. Primulaceen-Studien 7, Teil B: 1–25Google Scholar
  43. Kučera J, Turis P, Zozomová-Lihová J, Slovák M (2013) Cyclamen fatrense (Primulaceae): only a myth or a true west Carpathian endemic? Genetic and morphological evidence. Preslia 85:133–158Google Scholar
  44. Malynovski K, Kricsfalusy V (2002) Plant communities of the Ukrainian Carpathian highlands. Uzhgorod. 243 pp. ISBN 966-8269-05-5. [in Ukrainian]Google Scholar
  45. Manns U, Anderberg A (2005) Molecular phylogeny of Anagallis (Myrsinaceae) based on ITS, trnL-F, and ndhF sequence data. Int J Plant Sci 166(6):1019–1028.  https://doi.org/10.1086/449318 CrossRefGoogle Scholar
  46. Margl H (1973) Waldgesellschaften und Krummholz auf Dolomit. Angewandte Pflanzensoziologie Wien 21:1–51Google Scholar
  47. Marhold K (2011) Primulaceae [online]. Website http://www.emplantbase.org/home.html/ [Accessed 14. 12. 2016]
  48. Marhold K, Hindák F (eds) (1998) Checklist of non-vascular and vascular plants of Slovakia. Veda, BratislavaGoogle Scholar
  49. Martins L, Oberprieler C, Hellwig FH (2003) A phylogenetic analysis of Primulaceae sl based on internal transcribed spacer (ITS) DNA sequence data. Pl Syst Evol 237(1):75–85.  https://doi.org/10.1007/s00606-002-0258-1
  50. Mast AP, Kelso S, Richards JA, Lang DJ, Feller DMS, Conti E (2001) Phylogenetic relationship in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. Int. J. Plant. Sci 162:381–400 1058-5893/2001/16206-0020$03.00CrossRefGoogle Scholar
  51. Meyer FK (1985) Beitrag zur Kenntnis ost- und südosteuropäischer Soldanella-Arten. Haussknechtia 2:7–41Google Scholar
  52. Mráz P, Ronikier M (2016) Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linnean Soc 119:528–559  https://doi.org/10.1111/bij.12918
  53. Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, Gavilán GR, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos GA, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh JP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities incl. Electronic appendix S6. ESL1. List of diagnostic species of classes of the plant communities dominated by vascular plants. App. Veg. Sci 19(Suppl 1):3–264CrossRefGoogle Scholar
  54. Niederle J (2003) Remarks on the genus Soldanella L. in the West Carpathians. Acta Mus. Richnov., Sect. Natur 10(2):171–174Google Scholar
  55. Niederle J (2007) Soldanella rugosa is synonym to real S. marmarossiensis. Nordic J. Bot. 24:547–548CrossRefGoogle Scholar
  56. Niklfeld H (1999) Mapping the flora of Austria and the Eastern Alps. Rev Valdôtaine Hist Nat 51:53–62Google Scholar
  57. Onyshchenko VA (2009) Forests of order Fagetalia sylvaticae in Ukraine. MG Kholodny Institute of Botany. KyivGoogle Scholar
  58. Pawłowska S (1963) O polnocno karpackich gatunkach rodzaju Soldanella L. – De Soldanella quae in parte septentrionali Carpatorum crescunt. Fragm Flor Geobot 9:401–437Google Scholar
  59. Pawłowski B (1970) Remarques sur l'endémisme dans la flore des Alpes et des Carpates. Plant Ecol 21(4):181–243CrossRefGoogle Scholar
  60. Petřík P, Pergl J, Wild J (2010) Recording effort biases the species richness cited in plant distribution atlases. Perspect Plant Ecol Evol Syst 12:57–65.  https://doi.org/10.1016/j.ppees.2009.06.004
  61. Piękoś-Mirkowa H, Mirek Z, Miechówka A (1996) Endemic vascular plants in the polish Tatra Mts. Distribution and ecology Polish Bot Studies 12:1–107Google Scholar
  62. Pușcaru D, Pușcaru-Soroceanu E, Paucȃ A, Şerbȃnescu I, Beldie A, Ştefureac T, Cernescu N, Saghin F, Crețu V, Lupan L, Tașcenco V (1956) Pasunile alpine din Munții Bucegi. Ed Acad Bucuresti. 511 pp. [in Romanian]Google Scholar
  63. Reveal JL (2012) An outline of a classification scheme for extant flowering plants. Phytoneuron 37:1–221 ISSN 2153 733XGoogle Scholar
  64. Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60(2):373–389CrossRefGoogle Scholar
  65. Sârbu A, Ștefan N, Oprea A (2013) Plante Vaculare din România. Determinator ilustrat de teren. Editura Victor B Victor, Bucuresți, 1320 ppGoogle Scholar
  66. Slavík B (1988) Fytogeografická charakteristika. In: Hejný S. & Slavík B. (eds), Květena České socialistické republiky. 1. Academia, Praha. [in Czech]Google Scholar
  67. Slezák M, Hrivnák R, Petrášová A (2014) Numerical classification of alder carr and riparian alder forests in Slovakia. Phytocoenologia 44:283–308.  https://doi.org/10.1127/0340-269X/2014/0044-0588
  68. Steffen S, Kadereit JW (2014) Parallel evolution of flower reduction in two alpine Soldanella species (Primulaceae). Bot J Linn Soc 175:409–422.  https://doi.org/10.1111/boj.12174 CrossRefGoogle Scholar
  69. Štubňová E, Hodálová I, Kučera J, Mártonfioná L, Svitok M, Slovák M (2017) Karyological patterns in the Europaean endemic genus Soldanella L.: absolute genome size variation uncorrelated with chromosome numbers. Am J Bot 104(8):1241–1253.  https://doi.org/10.3732/ajb.1700153
  70. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453.  https://doi.org/10.1111/j.1654-1103.2002.tb02069.x CrossRefGoogle Scholar
  71. Trift I, Källersjö M, Anderberg AA (2002) The monophyly of Primula (Primulaceae) evaluated by analysis of sequences from the chloroplast gene RbcL. Syst Bot 27:396–407Google Scholar
  72. Ujházyová M, Ujházy K, Chytrý M, Willner W, Čiliak M, Máliš F, Slezák M (2016) Diversity of beech forest vegetation in the eastern Alps, bohemian massif and the Western Carpathians. Preslia 88:435–457Google Scholar
  73. Valachovič M, Hegedüšová K, Kanka R, Kliment J, Kollár J, Máliš F, Piscová V, Senko D, Slezák M, Ujházy K, Ujházyová M, Žarnovičan H (2014) Forest communities of the Vihorlat Mts (eastern Slovakia). Phytopedon 13:13–41 [in Slovak]Google Scholar
  74. Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  75. Zając A., Zając M. (eds) (2001) Distribution atlas of the vascular plants in Poland. KrakowGoogle Scholar
  76. Zechmeister HG, Steiner GM (1995) Quellfluren und Quellmoore des Waldviertels, Österreich. Tuexenia 15:161–197Google Scholar
  77. Zhang L-B, Kadereit JW (2002) The systematics of Soldanella (Primulaceae) based on morphological and molecular (ITS, AFLPs) evidence. Nordic J Bot 22(2):129–169.  https://doi.org/10.1111/j.1756-1051.2002.tb01360
  78. Zhang L-B, Kadereit JW (2004) Nomeclature of Soldanella L. (Primulaceae). Taxon 53:741–752.  https://doi.org/10.2307/4135448 CrossRefGoogle Scholar
  79. Zhang L-B, Comes HP, Kadereit JW (2001) Phylogeny and quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. Am J Bot 88:2331–2345.  https://doi.org/10.2307/3558393

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences  2019

Authors and Affiliations

  • Milan Valachovič
    • 1
    Email author
  • Eliška Štubňová
    • 1
    • 2
  • Dušan Senko
    • 1
  • Judita Kochjarová
    • 3
  • Gheorghe Coldea
    • 4
  1. 1.Institute of Botany, Plant Science and Biodiversity CentreSlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Department of Botany, Natural History MuseumSlovak National MuseumBratislavaSlovak Republic
  3. 3.Department of Phytology, Faculty of ForestryTechnical University ZvolenZvolenSlovakia
  4. 4.Institute of Biological ResearchCluj-NapocaRomania

Personalised recommendations