, Volume 74, Issue 2, pp 173–185 | Cite as

Molecular characterization of a diverse Iranian table grapevine germplasm using REMAP markers: population structure, linkage disequilibrium and association mapping of berry yield and quality traits

  • Mitra Razi
  • Reza Darvishzadeh
  • Mohamed Esmaeli Amiri
  • Hamed Doulati-Banehd
  • Pedro Martínez-GómezEmail author
Original Article


In this study forty-five table grape Iranian cultivars were assessed by using 42 retrotransposon-microsatellite amplified polymorphism (REMAP) markers also analyzing population structure, linkage disequilibrium and genomic regions associated with most important berry yield and quality traits. The phenotypic results showed the great diversity of the Iranian germplasm and their suitability for genetic and association studies. The studied grape cultivars were divided into three populations. A significant level of LD was observed in 1.22% of the retrotransposon marker pairs (P < 0.01). Mixed linear model procedure revealed that 40 loci had significant association with investigated traits. Finally, 27 markers showed significant association with regions controlling the studied berry yield and quality traits. These REMAP loci identified in this study associated to phenotypic traits may be applied in marker-assisted selection in table grape breeding programs.


Vitis vinífera Retrotransposon Genetics Genomics Breeding 



This research has been partially supported by project “Breeding stone fruit species assisted by molecular tools” from the Seneca Foundation of the Region of Murcia (19879/GERM/15). Authors thank the Support of the University of Zanjan (Iran) in the stay of Mitra Razi at CEBAS-CSIC of Murcia (Spain).

Compliance with ethical standards

Conflict of interests

No potential conflict of interest was reported by the authors.

Supplementary material

11756_2018_158_MOESM1_ESM.doc (39 kb)
Supplementary Table 1 Name, sequence and number of alleles for assayed retrotransposon and ISSR primers, conditions for the PCR reactions and primer comibation assayed. (DOC 39 kb)


  1. Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarim A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487. CrossRefGoogle Scholar
  2. Al-Maskri AH, Sajjad M, Khan SH (2012) Association mapping: a step forward to discovering new alleles for crop improvement. Int J Agric Biol 14:153–160Google Scholar
  3. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192. CrossRefGoogle Scholar
  4. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thompson MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377. CrossRefGoogle Scholar
  5. Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor Appl Genet 112:708–716. CrossRefGoogle Scholar
  6. Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine. Vitis vinifera L subsp Silvestris Heredity 104:431–437Google Scholar
  7. Battilana J, Lorenzi S, Moreira FM, Moreno-Sanz P, Failla O, Emanuelli F, Grando MS (2013) Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants. Mol Biotechnol 54:1031–1037. CrossRefGoogle Scholar
  8. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. CrossRefGoogle Scholar
  9. Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585. CrossRefGoogle Scholar
  10. Carbonneau A (1983) Sterilites male et femelle dans le genre Vitis, 1: Modelisation de leur heredite. Agronomie 3:635–644CrossRefGoogle Scholar
  11. Cardon LR, Palme LJR (2003) Population stratification and spurious allelic association. Lancet 361:598–604. CrossRefGoogle Scholar
  12. Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28. CrossRefGoogle Scholar
  13. Chitwood DH, Ranjan A, Martinez CC, Headland LR, Thiem T, Kumar R, Covington MF, Hatcher T, Naylor DT, Zimmerman S, Downs N, Raymundo N, Buckler ES, Maloof JN, Aradhya M, Prins B, Li L, Myles S, Sinha NR (2014) A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiol 164:259–272. CrossRefGoogle Scholar
  14. Correa J, Mamani M, Muñoz-Espinoza C, Laborie D, Muñoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162. CrossRefGoogle Scholar
  15. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8(38).
  16. D’Onofrio C, De Lorenzis G, Giordani T, Natali L, Cavallini A, Scalabrelli G (2010) Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genet Genomes 6:451–466. CrossRefGoogle Scholar
  17. Dalbo MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340. CrossRefGoogle Scholar
  18. Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a non climacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161. CrossRefGoogle Scholar
  19. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards J, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795. CrossRefGoogle Scholar
  20. Doligez A, Bertrand Y, Dias S, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grapes (Vitis vinifira L.). Tree Genet Genomes 6:413–422. CrossRefGoogle Scholar
  21. Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, Francois P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Peros JP, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217. CrossRefGoogle Scholar
  22. Doulati Baneh H, Grassi F, Mohammadi SA, Nazemieh A, De Mattia F, Imazio S, Labra M (2007) The use of AFLP and morphological markers to study Iranian grapevine germplasm to avoid genetic erosion. J Hort Sci Biotech 82:745–752. CrossRefGoogle Scholar
  23. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  24. Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124:623–635. CrossRefGoogle Scholar
  25. Eibach R, Hastrich H, Töpfer R (2003) Inheritance of aroma compounds. Acta Hort (603):337–344.
  26. Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot JM, This P, Grando MS (2010) A candidate gene association study on Muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241. CrossRefGoogle Scholar
  27. Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39. CrossRefGoogle Scholar
  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. CrossRefGoogle Scholar
  29. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapevines (Vitis vinifera). Theor Appl Genet 111:658–664. CrossRefGoogle Scholar
  30. Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot JM, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P, Martinez-Zapater JM (2014) Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biol 14:209. CrossRefGoogle Scholar
  31. Fillion L, Ageorges A, Picaud S, Coutos-The’venot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1094. doi:
  32. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515. CrossRefGoogle Scholar
  33. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Tyl - copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644CrossRefGoogle Scholar
  34. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp.sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139. CrossRefGoogle Scholar
  35. Fournier-Level A, Hugueney P, Verries C, This P, Ageorges A (2011) Genetic mechanisms underlying themethylation level of anthocyanins in grape (Vitis vinifera L). BMC Plant Biol 11:179. CrossRefGoogle Scholar
  36. Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F (2003) Evidence of a secondary grapevine domestication Centre detected by SSR analysis. Theor Appl Genet 107:1315–1320. CrossRefGoogle Scholar
  37. Houel C, Bounon R, Chaib J, Guichard C, Pero JP, Bacilieri R, Dereeper A, Canaguier A, Lacombe T, Diaye A, Le Paslier MC, Vernerey MS, Coriton O, Brunel D, This P, Torregrosa L, Adam-Blondon AF (2010) Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biol 10:284–299. CrossRefGoogle Scholar
  38. Huang XH, Wei XH, Sang T, Zhao QA, Feng Q, Zhao Y (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:61–967. CrossRefGoogle Scholar
  39. Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol 12:30–59. CrossRefGoogle Scholar
  40. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. CrossRefGoogle Scholar
  41. Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao JS (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487. CrossRefGoogle Scholar
  42. Kalendar R, Schulman HA (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484CrossRefGoogle Scholar
  43. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060. CrossRefGoogle Scholar
  44. Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Cavanagh JAL, Barris W, Schnabel RD, Taylor JF, Raadsma HW (2008) Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics 9:187. CrossRefGoogle Scholar
  45. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155. CrossRefGoogle Scholar
  46. Liang Y, Lenz RR, Dai W (2016) Development of retrotransposon-based molecular markers and their application in genetic mapping in chokeckerry (Prunus virginiana L.). Mol Breeding 36:109. CrossRefGoogle Scholar
  47. Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andres MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Gen Genomics 276:427–435 CrossRefGoogle Scholar
  48. Lijavetzky D, Cabezas JA, Ibanez A, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis. Vinifera L) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424. CrossRefGoogle Scholar
  49. Liu HF, Wu BH, Fan PG, Li SH, Li LS (2006) Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J Sci Food Agric 86:1526–1536. CrossRefGoogle Scholar
  50. Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592. CrossRefGoogle Scholar
  51. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoqlu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278. CrossRefGoogle Scholar
  52. Mather DE, Hyes PM, Chalmers KJ, Eglinton J, Matus I, Richardson K, Von Zitzewitz J, Marquez-Cedillo L, Hearnden P, Pal N (2004) Use of SSR marker data to study linkage disequilibrium and population structure in Hordeum vulgare: prospects for association mapping in barley. In: International barley genetics symposium, Brno, Czech Republic, pp.302–307Google Scholar
  53. McGovern PE (2003) Ancient wine: the search of the origin of viniculture. In: Princeton University press. USA, New JerseyGoogle Scholar
  54. Moisy C, Garrison KE, Meredith CP, Pelsy F (2008) Characterization of ten novel Ty1/copia-like retrotransposons families of the grapevine genome. BMC Genomics 9:469. CrossRefGoogle Scholar
  55. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Procc Natl Acad Sci USA 108:3457–3458. CrossRefGoogle Scholar
  56. Najafi J, Alipanah L. Ghareyazie B, Mohammadi SA, HaghNazari A, This P (2006) Genetic diversity of Iranian and some of European grapes revealed by microsatellite markers. Iran J Biotech 4:36–44Google Scholar
  57. Nicolas SD, Peros JP, Lacombe T, Launary A, Le Paslier MC, Berard A, Mangin B, Valiere S, Martins F, Le Cunff L, Chatelet P, This P, Doligez A (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74. CrossRefGoogle Scholar
  58. Pavy N, Namroud MC, Gagnon F, Isabel N, Bousquet J (2012) The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity 108:273–284. CrossRefGoogle Scholar
  59. Pelsy F (2007) Untranslated leader region polymorphism of Tvv1, a retrotransposon family, is a novel marker useful for analyzing genetic diversity and relatedness in the genus Vitis. Theor Appl Genet 116:15–27. CrossRefGoogle Scholar
  60. Pelsy F, Merdinoglu D (2002) Complete sequence of Tvv1, a family of Ty1 copia-like retrotransposons of Vitis vinifera L., reconstituted by chromosome walking. Theor Appl Genet 105:614–621. CrossRefGoogle Scholar
  61. Pereira HS, Barao A, Delgado M, Viegas W (2005) Genomic analysis of grapevine retrotransposon 1 (Gret1) in Vitis vinifera. Theor Appl Genet 111:871–878. CrossRefGoogle Scholar
  62. Pritchard JK, Stephanes M, Rosenberg NA (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181. CrossRefGoogle Scholar
  63. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Genet 113:1317–1329. CrossRefGoogle Scholar
  64. Riaz S, Tenscher AC, Rubin J, Graziani R, Pao SS, Walker MA (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet 117:671–681. CrossRefGoogle Scholar
  65. Rivera-Nunez D, Walker MJ (1989) A review of Palaebotanical findings of early Vitis in the Mediterranean and of the origins of cultivated grape-vines, with special reference to new pointers to prehistoric exploration in the western Mediterranean. Rev Palaeobot Palyno 51:205–237CrossRefGoogle Scholar
  66. Sefc KM, Steinkellner H, Lefort F, Botta R, Camara Machado A, Borrego J, Maletia E, Glõssl J (2003) Evaluation of the genetic contribution of local wild vines to European germplasm. Am J Enol Vit 54:15–21Google Scholar
  67. Shiraishi M (1993) Three descriptors for sugars to evaluate grape germplasm. Euphytica 71:9–106. CrossRefGoogle Scholar
  68. Simko I, Costanzo S, Haynes KG, Christ BJ, Jones RW (2004) Linkage disequilibrium mapping of a Verticillium dahlia resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet 108:217–224. CrossRefGoogle Scholar
  69. Sofia Pereira H, Barao A, Delgado M, Morais-Cecilio L, Viegas W (2005) Genomic analysis of grapevine retrotransposon 1 (Gret1) in Vitis vinifera. Theor Appl Genet 111:871–878. CrossRefGoogle Scholar
  70. Sorkheh K, Malysheva-Otto LV, Wirthensohn MG, Martínez-Gómez P (2008) Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genet Mol Biol 31:805–814 CrossRefGoogle Scholar
  71. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705. CrossRefGoogle Scholar
  72. Tello J, Torres-Perez R, Grimplet J, Carbonell-Bejerano P, Martinez-Zapater JM, Ibanez J (2015) Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biol 15:253. CrossRefGoogle Scholar
  73. Tello J, Torres-Perez R, Grimplet J, Ibanez J (2016) Association analysis of grapevine bunch using a comprehensive approach. Theor Appl Genet 129:227–242. CrossRefGoogle Scholar
  74. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519. CrossRefGoogle Scholar
  75. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730. CrossRefGoogle Scholar
  76. Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M (2014) A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics 15:823. CrossRefGoogle Scholar
  77. Vargas AM, Fajardo C, Borrego J, De Andrés MT, Ibanez J (2013a) Polymorphisms in VvPel associate with variation in berry texture and bunch size in the grapevine. Aust J Grape Wine Res 19:193–207. CrossRefGoogle Scholar
  78. Vargas A, Le Cunff L, This P, Ibanez J, Teresa M (2013b) VvGAI1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191:85–95. CrossRefGoogle Scholar
  79. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326. CrossRefGoogle Scholar
  80. Verriès C, Bès C, This P, Tesnière C (2000) Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L. Genome 43:366–376. CrossRefGoogle Scholar
  81. Villano C, Carputo D, Frusciante L, Santoro X, Aversano R (2014) Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from southern Italy. Mol Biotechnol 56:1011–1020. CrossRefGoogle Scholar
  82. Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160. CrossRefGoogle Scholar
  83. Yu J, Pressoir G, Briggs WH, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Kresovich S, Buckler ES (2006) A unified mixed model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208. CrossRefGoogle Scholar
  84. Zhang Q, Wu C, Ren F, Li Y, Zhang C (2012) Association analysis of important agronomical traits of maize lines with SSRs. Aust J Crop Sci 6:1131–1138Google Scholar
  85. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20. CrossRefGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Mitra Razi
    • 1
  • Reza Darvishzadeh
    • 2
    • 3
  • Mohamed Esmaeli Amiri
    • 1
  • Hamed Doulati-Banehd
    • 4
  • Pedro Martínez-Gómez
    • 5
    Email author
  1. 1.Department of HorticultureUniversity of ZanjanZanjanIran
  2. 2.Department of Plant Breeding and BiotechnologyUrmia UniversityUrmiaIran
  3. 3.Institute of BiotechnologyUrmia UniversityUrmiaIran
  4. 4.Horticulture Crops Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education CenterAREEOUrmiaIran
  5. 5.Plant Breeding DepartmentCEBAS-CSICMurciaSpain

Personalised recommendations