Advertisement

Biologia

, Volume 74, Issue 5, pp 487–492 | Cite as

Age determination and individual growth rate of Microtus oeconomus mehelyi based on live-trapping

  • Veronika Hulejová SládkovičováEmail author
  • Dávid Žiak
  • Peter Miklós
  • Ondrej Kameniar
  • Ľudovít Kocian
Original Article
  • 81 Downloads

Abstract

The evaluation of the age structure of a population is an important part of many mammalian population studies and usually requires comparison with an age interval standard. To be able to assess the age structure of the protected and rare root vole subspecies Microtus oeconomus mehelyi Éhik, 1928 we analysed data on body length measured in its natural habitat during a 4-year capture-recapture study and created a probability table to help classify individuals into cohorts. Each of the spring, summer and autumn cohorts and the group of overwintered individuals was significantly distinguishable from others and their growth rates and sizes varied from each other. Before winter, these different growth trajectories have led to more similar values in body length that could be a consequence of a trade-off between overwintering strategies depending on body size.

Keywords

Growth rate Cohorts Microtus oeconomus Age structure Age determination Overwintering 

Notes

Acknowledgments

We thank Peter Degma, Andrej Farkaš, Romana Gregoričková, Katarína Hollá, Matúš Kúdela, Barbara Mangová, Mária Melišková, Peter Mikulíček.

Funding

Research was supported by LIFE 08 NAT/SK/000239.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11756_2018_188_MOESM1_ESM.doc (340 kb)
ESM 1 (DOC 340 kb)

References

  1. Baláž I, Fraňová S (2013) Biometric values comparison of somatic and cranial features of two Microtus oeconomus subspecies. Folia Faunistica Slovaca 18:59–66Google Scholar
  2. Bauer K (1953) Zur Kenntnis von Microtus oeconomus méhelyi Éhik. Zool Jahrb 82:70–94Google Scholar
  3. Boonstra R (1994) Population cycles in microtines: the senescence hypothesis. Evol Ecol 8:196–219.  https://doi.org/10.1007/BF01238250 CrossRefGoogle Scholar
  4. Brown EB (1973) Changes in patterns of seasonal growth of Microtus pennsylvanicus. Ecology 54:1103–1110.  https://doi.org/10.2307/1935576 CrossRefGoogle Scholar
  5. Charlesworth B (1980) Evolution in age-structured populations. Cambridge University Press, CambridgeGoogle Scholar
  6. Ergon T, Speakman JR, Scantlebury M, Cavanagh R, Lambin X (2004) Optimal body size and energy expenditure during winter: why are voles smaller in declining populations? Am Nat 163:442–457.  https://doi.org/10.1086/381940 CrossRefGoogle Scholar
  7. Fitch HS (1957) Aspects of reproduction and development in the prairie vole (Microtus ochrogaster). Univ Kans Mus Nat Hist 10:129–161Google Scholar
  8. Gliwicz J (1996) Life history of voles: growth and maturation in seasonal cohorts of the root vole. Miscel·Zool 19(1):1–12Google Scholar
  9. Gubányi A, Dudich A, Stollmann A, Ambros M (2009) Distribution and conservation management of the root vole (Microtus oeconomus) populations along the Danube in Central Europe (Rodentia: Arvicolinae). Lynx 40:29–42Google Scholar
  10. Hansson L (1991) Regional and individual variation in body growth in winter of bank voles Clethrionomys grareolus. Acta Theriol 36:357–362CrossRefGoogle Scholar
  11. Hulejová Sládkovičová V, Dąbrowski MJ, Žiak D, Miklós P, Gubányi A, La Haye MJ, Bekker D, Thissen J, Herzig-Straschil B, Kocian Ľ, Gliwicz J (2018) Genetic variability of the cold-tolerant Microtus oeconomus subspecies left behind retreating glaciers. Mamm Biol 88:85–93.  https://doi.org/10.1016/j.mambio.2017.11.007 CrossRefGoogle Scholar
  12. Iverson SL, Turner AJ (1974) Winter weight dynamics in Microtus pennsylvanicus. Ecology 55:1030–1041.  https://doi.org/10.2307/1940353 CrossRefGoogle Scholar
  13. Kilman S (1995) Statgraphics guide: for DOS Stratgraphis plus version 1.4 and windows Statgraphics plus version 7.0. McGraw-Hill, Inc., New YorkGoogle Scholar
  14. Klinková D (1995) Biológia rozmnožovania, postnatálna morfometria a niektoré etologické aktivity hraboša severského stredoeurópskeho (Microtus oeconomus mehelyi Ehik, 1928). Diplomová práca, Prírodovedecká Fakulta Univerzity Komenského, Bratislava. [Reproductive biology, postnatal morphometry and some behavioural activities of pannonian root vole (Microtus oeconomus mehelyi Ehik, 1928); Diploma thesis, Faculty of Natural Sciences, Comenius University, Bratislava]Google Scholar
  15. Kratochvíl J, Rosický B (1955) Hraboš severní (Microtus oeconomus), relikt zvířeny z doby ledové v ČSR. Práce brněnské základny Československé akademie věd 27:33–72Google Scholar
  16. Krebs CJ, Myers JH (1974) Population cycles in small mammals. Adv Ecol Res 8:267–399CrossRefGoogle Scholar
  17. Petterborg LJ (1978) Effect of photoperiod on body weight in the vole, Microtus montanus. Can J Zool 56:431–435CrossRefGoogle Scholar
  18. Tkadlec E, Zejda J (1998) Small rodent population fluctuations: the effects of age structure and seasonality. Evol Ecol 12:191–210.  https://doi.org/10.1023/A:1006583713042 CrossRefGoogle Scholar
  19. Van Wijngaarden A, Zimmermann K (1965) Zur Kenntnis von Microtus oeconomus arenicola (de Sélys Longchamps, 1841). I. Taxonomie. Z Säugetierkunde 30:129–136Google Scholar
  20. Zub K, Borowski Z, Szafrańska PA, Wieczorek M, Konarzewski M (2014) Lower body mass and higher metabolic rate enhance winter survival in root voles, Microtus oeconomus. Biol J Linn Soc 113:297–309.  https://doi.org/10.1111/bij.12306

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of Natural SciencesComenius University in BratislavaBratislava 4Slovakia
  2. 2.Department of Forest Ecology, Faculty of ForestryUniversity of Life Sciences in PraguePraha 6 – SuchdolCzech Republic

Personalised recommendations