Advertisement

Biologia

pp 1–13 | Cite as

Land cover changes on temperate organic substrates over last 150 years: evidence from the Czech Republic

  • Jana Navrátilová
  • Marek Havlíček
  • Josef NavrátilEmail author
  • Ryan J. Frazier
Original Article
  • 23 Downloads

Abstract

Organic substrates are distinctive and important resources due to their ability to regulate nutrient cycles and habitats they provide. In this research we test the importance of organic substrates for present distribution of habitats accumulating organic sediment and compare historic (circa 1850) and present land cover maps to characterise the long-term change on these substrates. The results show: 1) areal extent of organic substrates in lowlands is 8552 ha, in highlands 11,465 ha and in mountains 13,374 ha; 2) the area of current mire habitats is 43,801.75 ha, on organic-substrates it is 9555.64 ha (i.e. 21.82% share on all current mire habitats) and mire habitats covers 28.62% of organic sediments, and; 3) the test of losses and gains among land cover units and between organic and non-organic soils show us, that the most remarkable land cover losses on organic soils occurred on grasslands in all altitude categories – to water areas and arable land in Lowlands (< 350 m a.s.l.), to forests in Highlands (from 350 to 750 m a.s.l.) and Mountains (> 750 m a.s.l.). Although organic sediments are sparse in lowlands, they were found to be very important for the present distribution of mire habitats.

Keywords

Vegetation Fen Bog Peatland Mosaic plot Central Europe 

Notes

Acknowledgments

The research was supported by institutional funding from the Institute of Botany, Czech Academy of Sciences (Ja.N.; long-term research development project no. RVO 67985939), Silva Tarouca Research Institute for Landscape and Ornamental Gardening (M.H., institutional support VUKOZ-IP-00027073, project QJ1630422 National Agency for Agricultural Research, Czech Republic), the University of South Bohemia (Jo.N.), and University of British Columbia (R.J.F.). The geological map (i.e. the distribution of organic sediments) kindly provided by the Czech Geological Survey; the biotypes vector mapping layer kindly provided by the Nature Conservation Agency of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11756_2018_183_MOESM1_ESM.pdf (53 kb)
ESM 1 (PDF 52 kb)

References

  1. Albrecht E, Ratamaki O (2016) Effective arguments for ecosystem services in biodiversity conservation - a case study on Finnish peatland conservation. Ecosyst Serv 22:41–50.  https://doi.org/10.1016/j.ecoser.2016.09.003 CrossRefGoogle Scholar
  2. Andersen R, Farrell C, Graf M, Muller F, Calvar E, Frankard P, Caporn S, Anderson P (2017) An overview of the progress and challenges of peatland restoration in Western Europe. Restor Ecol 25:271–282.  https://doi.org/10.1111/rec.12415 CrossRefGoogle Scholar
  3. Bičík I, Kabrda J (2008) Changing land use structure and its driving forces in border regions of Czechia. In: Kabrda J. Bičík I. (eds.) Man in the landscape across frontiers: Landscape and land use change in Central European border regions. Faculty of Science, Charles University in Prague, Czech Republic. pp 33–47Google Scholar
  4. Calvo-Iglesias MS, Fra-Paleo U, Crecente-Maseda R, Diaz-Varela RA (2006) Directions of change in land cover and landscape patterns from 1957 to 2000 in agricultural landscapes in NW Spain. Environ Manag 38:921–933.  https://doi.org/10.1007/s00267-005-0276-1 CrossRefGoogle Scholar
  5. Calle L, Canadell JG, Patra P, Ciais P, Ichii K, Tian HQ, Kondo M, Piao S, Arneth A, Poulter B (2016) Regional carbon fluxes from land use and land cover change in Asia, 1980-2009. Environ Res Lett 11(7):12.  https://doi.org/10.1088/1748-9326/11/7/074011 CrossRefGoogle Scholar
  6. Cebecauerová M, Cebecauer T (2008) Spatio-temporal trends of landscape development in southwest part of Slovakia: analysis of major landscape change types. Ekologia 27:212–228Google Scholar
  7. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  8. Chytrý M, Kučera T, Kočí M, Grulich V, Luštyk P (2010) Katalog biotopů České republiky. AOPK ČR, PrahaGoogle Scholar
  9. Comber A, Balzter H, Cole B, Fisher P, Johnson SCM, Ogutu B (2016a) Methods to quantify regional differences in land cover change. Remote Sens 8(19).  https://doi.org/10.3390/rs8030176
  10. Comber A, Davies H, Pinder D, Whittow JB, Woodhall A, Johnson SCM (2016b) Mapping coastal land use changes 1965-2014: methods for handling historical thematic data. Trans Inst Br Geogr 41:442–459.  https://doi.org/10.1111/tran.12128 CrossRefGoogle Scholar
  11. Cordell K, Wolff S (2005) Ethnic Germans in Poland and the Czech Republic: a comparative evaluation. Natly Pap 33:255–276.  https://doi.org/10.1080/00905990500088610 CrossRefGoogle Scholar
  12. Cubizolle H, Fassion F, Argant J, Latour-Argant C, Galet P, Oberlin C (2012) Mire initiation, climatic change and agricultural expansion over the course of the Late-Holocene in the Massif Central mountain range (France): causal links and implications for mire conservation. Quat Int 251:77–96.  https://doi.org/10.1016/j.quaint.2011.07.001 CrossRefGoogle Scholar
  13. Dohnal Z, Kunst M, Mejstřík V, Raučina Š, Vydra V (1965) Československá rašeliniště a slatiniště. Nakladatelství ČSAV, PrahaGoogle Scholar
  14. Douda J, Čejková A, Douda K, Kochánková J (2009) Development of alder carr after the abandonment of wet grasslands during the last 70 years. Ann For Sci 66(13).  https://doi.org/10.1051/forest/2009065
  15. Dyderski MK, Czapiewska N, Zajdler M, Tyborski J, Jagodzinski AM (2016) Functional diversity, succession, and human-mediated disturbances in raised bog vegetation. Sci Total Environ 562:648–657.  https://doi.org/10.1016/j.scitotenv.2016.04.102 CrossRefGoogle Scholar
  16. Dyderski MK, Gdula AK, Jagodziński AM (2015) Encroachment of woody species on a drained transitional peat bog in Mszar Bogdaniec nature reserve (Western Poland). Folia Forestalia Polonica, Series A 57:160–172.  https://doi.org/10.1515/ffp-2015-0016 CrossRefGoogle Scholar
  17. Eaton J, McGoff N, Byrne K, Leahy P, Kiely G (2008) Land cover change and soil organic carbon stocks in the Republic of Ireland 1851-2000. Clim Chang 91:317–334.  https://doi.org/10.1007/s10584-008-9412-2 CrossRefGoogle Scholar
  18. Eckstein J, Leuschner HH, Bauerochse A, Sass-Klaassen U (2009) Subfossil bog-pine horizons document climate and ecosystem changes during the Mid-Holocene. Dendrochronologia 27:129–146.  https://doi.org/10.1016/j.dendro.2009.06.007 CrossRefGoogle Scholar
  19. Edvardsson J, Simanauskiene R, Taminskas J, Bauziene I, Stoffel M (2015) Increased tree establishment in Lithuanian peat bogs - insights from field and remotely sensed approaches. Sci Total Environ 505:113–120.  https://doi.org/10.1016/j.scitotenv.2014.09.078 CrossRefGoogle Scholar
  20. Fodor L, Barta A, Fónai M, Bányai O (2016) Local environmental protection in Hungary:A research hypothesis. Tér és Társadalom, 30(3): 19–39.  https://doi.org/10.17649/TET.30.3.2763
  21. Frelechoux F, Buttler A, Gillet F, Gobat JM, Schweingruber FH (2003) Succession from bog pine (Pinus uncinata var. rotundata) to Norway spruce (Picea abies) stands in relation to anthropic factors in Les Saignolis bog, Jura Mountains, Switzerland. Ann For Sci 60:347–356.  https://doi.org/10.1051/forest:2003025 CrossRefGoogle Scholar
  22. Friendly M (1994) Mosaic display for multiway contingency tables. J Am Stat Assoc 89:190–200CrossRefGoogle Scholar
  23. Fruh-Muller A, Wegmann M, Koellner T (2015) Flood exposure and settlement expansion since pre-industrial times in 1850 until 2011 in North Bavaria, Germany. Reg Environ Chang 15:183–193.  https://doi.org/10.1007/s10113-014-0633-9 CrossRefGoogle Scholar
  24. Gerdol R, Bragazza L, Brancaleoni L (2008) Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO2 exchange in an alpine bog. New Phytol 179:142–154.  https://doi.org/10.1111/j.1469-8137.2008.02429.x CrossRefGoogle Scholar
  25. Grootjans AP, Hunneman H, Verkiel H, Van Andel J (2005) Long-term effects of drainage on species richness of a fen meadow at different spatial scales. Basic Appl Ecol 6:185–193.  https://doi.org/10.1016/j.baae.2005.01.008 CrossRefGoogle Scholar
  26. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755.  https://doi.org/10.1111/j.1365-2699.2010.02424.x
  27. Hájek M, Jiroušek M, Navrátilová J, Horodyská E, Peterka T, Pleškova Z, Navrátil J, Hájková P, Hájek T (2015) Changes in the moss layer in Czech fens indicate early succession triggered by nutrient enrichment. Preslia 87:279–301Google Scholar
  28. Hájková P, Horsák M, Hájek M, Lacina A, Buchtová H, Pelanková B (2012) Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41:690–706.  https://doi.org/10.1111/j.1502-3885.2012.00263.x
  29. Hájková P, Jamrichová E, Horsák M, Hájek M (2013) Holocene history of a Cladium mariscus-dominated calcareous fen in Slovakia: vegetation stability and landscape development. Preslia 85:289–315Google Scholar
  30. Hergoualc'h K, Gutierrez-Velez VH, Menton M, Verchot LV (2017) Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For Ecology and Manag 393:63–73.  https://doi.org/10.1016/j.foreco.2017.03.016 CrossRefGoogle Scholar
  31. Hersperger AM, Burgi M (2009) Going beyond landscape change description: quantifying the importance of driving forces of landscape change in a Central Europe case study. Land Use Policy 26:640–648.  https://doi.org/10.1016/j.landusepol.2008.08.015 CrossRefGoogle Scholar
  32. Horáčková Š, Pišút P, Falťan V, Chovanec P, Petrovič F (2018) Historical changes and vegetation development after intensive peat extraction in the lowland mires of Slovakia. Appl Ecol Environ Res 16(4):5025–5045.  https://doi.org/10.15666/aeer/1604_50255045 CrossRefGoogle Scholar
  33. Hoscilo A, Page SE, Tansey KJ, Rieley JO (2011) Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int J Wildland Fire 20(4):578–588.  https://doi.org/10.1071/WF10029 CrossRefGoogle Scholar
  34. Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob Biogeochem Cycles 31:456–472.  https://doi.org/10.1002/2016gb005546 CrossRefGoogle Scholar
  35. Jansen F, Zerbe S, Succow M (2009) Changes in landscape naturalness derived from a historical land register-a case study from NE Germany. Landsc Ecol 24:185–198.  https://doi.org/10.1007/s10980-008-9297-5 CrossRefGoogle Scholar
  36. Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, Tahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma RJ, Bioret F, Biţă-Nicolae C, Biurrun I, Calix M, Capelo J, Čarni A, Chytrý M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hájek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molnár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Šumberová K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R, Valachovič M (2016) European Red List of Habitats Part 2. Terrestrial and freshwater habitats. Publications Office of the European Union, LuxembourgGoogle Scholar
  37. Jiroušek M, Poulíčková A, Kintrová K, Opravilová V, Hájková P, Rybniček K, Kočí M, Bergová K, Hnilica R, Mikulášková E, Králová S, Hájek M (2013) Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshw Biol 58:2196–2207.  https://doi.org/10.1111/fwb.12201
  38. Joosten H, Moen A, Couwenberg J, Tanneberger F (2017) Mire diversity in Europe: mire and peatland types. In: Joosten H, Tanneberger F, Moen A (eds) Mires and peatlands of Europe status, distribution and conservation. Schweizerbart. Science Publishers, StuttgartGoogle Scholar
  39. Kabai G (2017) The social conditions of regionalism in the Hungarian Balaton Region. DETUROPE 9(1):111–129Google Scholar
  40. Kapusta J, Petrovič F, Hreško J (2018) Monitoring open water area changes in a small tarn using historical orthophotomaps and a historical bathymetric map: a case study of the Litworowy Staw lake, the High Tatras. J Mt Sci 15(10):2089–2102.  https://doi.org/10.1007/s11629-018-4915-4 CrossRefGoogle Scholar
  41. Kareksela S, Haapalehto T, Juutinen R, Matilainen R, Tahvanainen T, Kotiaho JS (2015) Fighting carbon loss of degraded peatlands by jump-starting ecosystem functioning with ecological restoration. Sci Total Environ 537:268–276.  https://doi.org/10.1016/j.scitotenv.2015.07.094 CrossRefGoogle Scholar
  42. Kiliánová H, Pechanec V, Brus J, Kirchner K, Machar I (2017) Analysis of the development of land use in the Morava River floodplain, with special emphasis on the landscape matrix. Morav Geogr Rep 25:46–59.  https://doi.org/10.1515/mgr-2017-0005
  43. Klove B, Berglund K, Berglund O, Weldon S, Maljanen M (2017) Future options for cultivated Nordic peat soils: can land management and rewetting control greenhouse gas emissions? Environ Sci Pol 69:85–93.  https://doi.org/10.1016/j.envsci.2016.12.017 CrossRefGoogle Scholar
  44. Koch M, Jurasinski G (2015) Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecol & Divers 8:49–60.  https://doi.org/10.1080/17550874.2013.862752 CrossRefGoogle Scholar
  45. Lasanta T, Arnaez J, Pascual N, Ruiz-Flano P, Errea MP, Lana-Renault N (2017) Space-time process and drivers of land abandonment in Europe. Catena 149:810–823.  https://doi.org/10.1016/j.catena.2016.02.024 CrossRefGoogle Scholar
  46. Mailänder S, Eberle J, Blümel WD (2004) Human-induced landscape changes on the eastern Swabian Alb (South-Western Germany) since the beginning of the 19th century: dimensions, causes and effects. Erde 135:175–204Google Scholar
  47. Martinat S, Navratil J, Picha K, Tureckova K, Klusacek P (2017) Brownfield regeneration from the perspective of residents: place circumstances versus character of respondents. DETUROPE 9(2):71–92Google Scholar
  48. Matyshak GV, Goncharova OY, Moskalenko NG, Walker DA, Epstein HE, Shur Y (2017) Contrasting soil thermal regimes in the forest-tundra transition near Nadym, West Siberia, Russia. Permafr Periglac Process 28:108–118.  https://doi.org/10.1002/ppp.1882 CrossRefGoogle Scholar
  49. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia Medica 22:276–282CrossRefGoogle Scholar
  50. Meyer D, Zeileis A, Hornik K (2006) The strucplot framework: visualizing multi-way contingency tables with VCD. J Stat Softw 17:48CrossRefGoogle Scholar
  51. Miettinen J, Hooijer A, Vernimmen R, Liew SC, Page SE (2017) From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ Res Lett 12(2):10CrossRefGoogle Scholar
  52. Munoz-Rojas M, Jordan A, Zavala LM, De la Rosa D, Abd-Elmabod SK, Anaya-Romero M (2015) Impact of land use and land cover changes on organic carbon stock in Mediterranean soils (1956-2007). Land Degrad Dev 26:168–179.  https://doi.org/10.1002/ldr.2194 CrossRefGoogle Scholar
  53. NCACR (2014) Habitat mapping layer. NCACR, PrahaGoogle Scholar
  54. Obu J, Lantuit H, Myers-Smith I, Heim B, Wolter J, Fritz M (2017) Effect of terrain characteristics on soil organic carbon and Total nitrogen stocks in soils of Herschel Island, Western Canadian Arctic. Permafr Periglac Process 28:92–107.  https://doi.org/10.1002/ppp.1881 CrossRefGoogle Scholar
  55. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818.  https://doi.org/10.1111/j.1365-2486.2010.02279.x CrossRefGoogle Scholar
  56. Pavelková R, Frajer J, Havlíček M, Netopil P, Rozkošný M, David V, Dzuraková M, Sarapatka B (2016) Historical ponds of the Czech Republic: an example of the interpretation of historic maps. J Maps 12:551–559.  https://doi.org/10.1080/17445647.2016.1203830
  57. Piernik A (2005) Vegetation-environment relations on inland saline habitats in Central Poland. Phytocoenologia 35:19–37.  https://doi.org/10.1127/0340-269x/2005/0035-0019 CrossRefGoogle Scholar
  58. Plešková Z, Jiroušek M, Peterka T, Hájek T, Dítě D, Hájková P, Navrátilová J, Šimová A, Syrovátka V, Hájek M (2016) Testing inter-regional variation in pH niches of fen mosses. J Veg Sci 27:352–364.  https://doi.org/10.1111/jvs.12348
  59. Potapov PV, Turubanova SA, Tyukavina A, Krylov AM, McCarty JL, Radeloff VC, Hansen MC (2015) Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens Environ 159:28–43.  https://doi.org/10.1016/j.rse.2014.11.027 CrossRefGoogle Scholar
  60. Quinton WL, Hayashi M, Chasmer LE (2011) Permafrost-thaw-induced land-cover change in the Canadian subarctic: implications for water resources. Hydrol Process 25(1):152–158.  https://doi.org/10.1002/hyp.7894 CrossRefGoogle Scholar
  61. SAS. Mosaic plot. http://www.jmp.com/support/help/Mosaic_Plot.shtml. Accessed 15 June 2017
  62. Schrautzer J, Sival F, Breuer M, Runhaar H, Fichtner A (2013) Characterizing and evaluating successional pathways of fen degradation and restoration. Ecol Indic 25:108–120.  https://doi.org/10.1016/j.ecolind.2012.08.018 CrossRefGoogle Scholar
  63. Seer FK, Schrautzer J (2014) Status, future prospects, and management recommendations for alkaline fens in an agricultural landscape: a comprehensive survey. J Nat Conserv 22:358–368.  https://doi.org/10.1016/j.jnc.2014.03.003 CrossRefGoogle Scholar
  64. Seiler U, Walz U (2014) Reconstruction of forest development based on forest management plans and historical maps: a contribution to research on land use change in the Saxon Switzerland national park region. Waldokologie Online 14:31–42Google Scholar
  65. Shang ZH, Feng QS, Wu GL, Ren GH, Long RJ (2013) Grasslandification has significant impacts on soil carbon, nitrogen and phosphorus of alpine wetlands on the Tibetan Plateau. Ecol Eng 58:170–179.  https://doi.org/10.1016/j.ecoleng.2013.06.035 CrossRefGoogle Scholar
  66. Shao Y, Taff GN, Ren J, Campbell JB (2016) Characterizing major agricultural land change trends in the Western Corn Belt. ISPRS J Photogramm Remote Sens 122:116–125.  https://doi.org/10.1016/j.isprsjprs.2016.10.009 CrossRefGoogle Scholar
  67. Skokanová H, Havlíček M, Borovec R, Demek J, Eremiašová R, Chrudina Z, Mackovčin P, Ryšková R, Slavík P, Stranská T, Svoboda J (2012) Development of land use and main land use change processes in the period 1836-2006: case study in the Czech Republic. J Maps 8:88–96.  https://doi.org/10.1080/17445647.2012.668768
  68. Skokanová H, Havlíček M, Klusáček P, Martinat S (2017) Five military training areas - five different trajectories of land cover development? Case studies from the Czech Republic. Geographia Cassoviensis 11(2):201–213Google Scholar
  69. Succow M (2002) Past and future use of central European peatland. Telma 32:255–266Google Scholar
  70. Suto L, Dobany Z, Novak T, Adorjan B, Incze J, Rozsa P (2017) Long-term changes of land use/land cover pattern in human transformed microregions - case studies from borsod-Abauj-Zemplén County, North Hungary. Carpathian J. Earth Environ Sci 12:473–483Google Scholar
  71. Szabo P, Galová A, Jamrichová E, Šumberová K, Šípoš J, Hedl R (2017) Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg Environ Chang 17:501–514.  https://doi.org/10.1007/s10113-016-1033-0
  72. Tanneberger F, Tegetmeyer C, Busse S, Barthelmes A, Shumka S, Marine AM, Jenderedjian K, Steiner GM, Essl F, Etzold J, Mendes C, Kozulin A, Frankard P, Milanovic D, Ganeva A, Apostolova I, Alegro A, Delipetrou P, Navratilová J, Risager M, Leivits A, Fosaa AM, Tuominen S, Muller F, Bakuradze T, Sommer M, Christanis K, Szurdoki E, Oskarsson H, Brink SH, Connolly J, Bragazza L, Martinelli G, Aleksans O, Priede A, Sungaila D, Melovski L, Belous T, Saveljic D, de Vries F, Moen A, Dembek W, Mateus J, Hanganu J, Sirin A, Markina A, Napreenko M, Lazarevič P, Stanová VS, Skoberne P, Perez PH, Pontevedra-Pombal X, Lonnstad J, Kuchler M, Wust-Galley C, Kirca S, Mykytiuk O, Lindsay R, Joosten H (2017) The peatland map of Europe. Mires and Peat 19:22.  https://doi.org/10.19189/MaP.2016.OMB.264
  73. Tolasz R, Míková T, Valeriánová A, Voženílek V (eds) (2007) Atlas podnebí Česka. ČHMÚ, Praha, OlomoucGoogle Scholar
  74. Van Beek R, Maas GJ, Van Den Berg E (2015) Home Turf: an interdisciplinary exploration of the long-term development, use and reclamation of raised bogs in the Netherlands. Landsc Hist 36:5–34.  https://doi.org/10.1080/01433768.2015.1108024 CrossRefGoogle Scholar
  75. Van der Horst D, Martinat S, Navratil J, Dvorak P, Chmielova P (2018) What can the location of biogas plants tell us about agricultural change? A case study from the Czech Republic. DETUROPE 10(1):33–52Google Scholar
  76. Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37:360–363Google Scholar
  77. Wrbka T, Erb KH, Schulz NB, Peterseil J, Hahn C, Haberl H (2004) Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21(3):289–306.  https://doi.org/10.1016/j.landusepol.2003.10.012 CrossRefGoogle Scholar
  78. Wulf M, Sommer M, Schmidt R (2010) Forest cover changes in the Prignitz region (NE Germany) between 1790 and 1960 in relation to soils and other driving forces. Landsc Ecol 25:299–313.  https://doi.org/10.1007/s10980-009-9411-3 CrossRefGoogle Scholar
  79. Xu J, Morris PJ, Liu J, Holden J (2018) PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160:134–140.  https://doi.org/10.1016/j.catena.2017.09.010 CrossRefGoogle Scholar
  80. Zgłobicki W, Kotodyńska-Gavvrysiak R, Gawrysiak Ł, Pawłowski A (2012) Geotourism assets of loess relief in western part of the Lublin Upland. Prz Geol 60:26–31Google Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Experimental Garden and Collection of Aquatic and Wetland Plants, Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  2. 2.Silva Tarouca Research Institute for Landscape and Ornamental GardeningBrnoCzech Republic
  3. 3.Department of Biological Studies, Faculty of AgricultureUniversity of South Bohemia in České BudějoviceČeské BudějoviceCzech Republic
  4. 4.Department of Forest Resources Management, Faculty of ForestryUniversity of British ColumbiaVancouverCanada

Personalised recommendations