, Volume 74, Issue 3, pp 237–250 | Cite as

Biological control of growth promoting rhizobacteria against verticillium wilt of pepper plant

  • Khadidja GuenounEmail author
  • Mayssa Chattaoui
  • Meriam Bouri
  • Ali Rhouma
  • Karim Naghmouchi
  • Aly Raies
Original Article


Verticillium dahliae is one of the most important soil pathogens, causing verticillium wilt. It is well known that the use of chemical products against this pathogen is not without side effects on the environment. In this regard, the present study was aimed to search for antagonistic rhizobacteria as an alternative of biological control against this causal agent. A total of 162 isolates were screened for their antagonistic activity according to the “double layer” and the “well diffusion” methods. Three of them (RS11, SF82 and ZO4), were subsequently selected as biological control agent (BCAs) according to their efficiency and were identified by 16S rRNA sequencing and Biolog microplate GEN III as Bacillus spp. Using 10 different lipopeptide gene primers, PCR reactions only revealed the involvement of genes responsible for iturins (ituA, ituD, ituC), bacillomycin (bmyA) and Bacilysin (bacA / B-F, bacA / B-R) biosynthesis. The Plant Growth Promoting Rhizobacteria traits [enzymatic activities, phytohormones production] of the three BCAs were also studied in vitro then on pepper plant (Capsicum annuum L.), indicating that Bacillus subtilis ZO4 was the most effective, enhancing leaf, stem and root growth comparing to the control.


Bacillus spp. Verticillium dahliae BCA PGPR Iturin 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abeysinghe S (2009) Effect of combined use of Bacillus subtilis CA32 and Trichoderm harzianum RUOI on biological control of Rhizoctonia satani on Solanum melongena and Capsicum annuum. Plant Pathol J 8:9–16. CrossRefGoogle Scholar
  2. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12. CrossRefGoogle Scholar
  3. Ahmad Z, Wu J, Chen L, Dong W (2017) Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 7:1777. CrossRefGoogle Scholar
  4. Altinok HH, Dikilitas M, Yildiz HN (2013) Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnol Biotechnol Equip 27:3952–3958. CrossRefGoogle Scholar
  5. Angelopoulou DJ, Naska EJ, Paplomatas EJ, Tjamos SE (2014) Biological control agents (BCAs) of verticillium wilt: influence of application rates and delivery method on plant protection, triggering of host defence mechanisms and rhizosphere populations of BCAs. Plant Pathol 63:1062–1069. CrossRefGoogle Scholar
  6. Anith KN, Radhakrishan NV, Manpmohandas TP (2003) Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiol Res 158:91–97. CrossRefGoogle Scholar
  7. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051. CrossRefGoogle Scholar
  8. Benkiara A, Zaraî JN, Badis A, Rebzani F, Boulkour TS, Rekik H, Naili B, Ferradji FZ, Bejar S, Jaouadi B (2013) Biochemical and molecular characterization of a thermo-and detergent-stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. Int Biodeterior Biodegrad 83:129–138. CrossRefGoogle Scholar
  9. Bent E, Tuzun S, Chanway CP, Eneback S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800. CrossRefGoogle Scholar
  10. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. CrossRefGoogle Scholar
  11. Blumer C, Hass D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177. CrossRefGoogle Scholar
  12. Bochner BR (2003) New technologies to assess genotype–phenotype relationships. Nat Rev Genet 4:309–314. CrossRefGoogle Scholar
  13. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255. CrossRefGoogle Scholar
  14. Cakmakci R, Erat M, Erdogan U, Dönmez MF (2007) The influence of plant growth-promoting rhizobateria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil 170:288–295. CrossRefGoogle Scholar
  15. Calderon AR, Dolores JR, Alcazar BJ, Belaj A, De la Rosa R, Leon L (2015a) Evaluation of verticillium wilt resistance in selections from olive breeding crosses. Euphytica 206:619–629. CrossRefGoogle Scholar
  16. Calderon AR, Rodríguez-Jurado RD, Leon L, Alcazar BJ, De la Rosa R, Belaj A (2015b) Pre-breeding for resistance to verticillium wilt in olive: fishing in the wild relative gene pool. Crop Prot 75:25–33. CrossRefGoogle Scholar
  17. Cao Y, Ling N, Yang XM, Chen LH, Shen QR (2011) Bacillus subtilis SQR 9 can control fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506. CrossRefGoogle Scholar
  18. Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Modrie P, Legrève A, Mahillon J, Bragard C (2018) Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9(143).
  19. Cawoy H, Debois D, Franzil L, De Pauw E, Thnart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microb Biotechnol 8:281–295. CrossRefGoogle Scholar
  20. Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek 109:1375–1388. CrossRefGoogle Scholar
  21. Chen X, Zhang Y, Fu X, Li Y, Wang Q (2016) Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol Technol 115:113–121. CrossRefGoogle Scholar
  22. Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80:115–123. CrossRefGoogle Scholar
  23. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases principles, mechanisms of action, future prospects. Appl Environ Microbiol 71:4951–4959. CrossRefGoogle Scholar
  24. Compaoré CS, Nielsen DS, Sawadogo-Lingani H, Berner TS, Nielsen KF, Adimpong DB, Diawara B, Ouedraogo GA, Jakobsen M, Thorsen L (2013) Bacillus amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for the production of bikalga, an alkaline fermented food. J Appl Microbiol 115:133–146. CrossRefGoogle Scholar
  25. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachishypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394. CrossRefGoogle Scholar
  26. Dinesh R, Anandaraj M, Kumar A, Srinivasan V, Bini YK, Subila KP, Aravind R, Hamza S (2013) Effects of plant growth promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale Rosc.) cultivation. Agric Res 2:346–353. CrossRefGoogle Scholar
  27. Douira A, Benkirane R, Touhami AO, Elhaloui NE (2008) Verticillium wilt of pepper (Capsicum annuum) in Morocco. J Phytopathol 143:467–470. CrossRefGoogle Scholar
  28. Dweipayan G, Pinakin D, Pranav P, Janki NT (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. CrossRefGoogle Scholar
  29. Edwards SG, Seddon B (2008) Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro (2008). J Appl Microbiol 91:652–659. CrossRefGoogle Scholar
  30. Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878. CrossRefGoogle Scholar
  31. Fernandes PAV, De Arruda IR, Dos Santos AFAB, De Araujo AA, Souto Maior AM, Ximenes EZ (2007) Antimicrobial activity of surfactants produced by R14 against Bacillus subtilis multidrug resistant bacteria. Braz J Microbiol 38:704–709. CrossRefGoogle Scholar
  32. Gamalero E, Lingua G, Berta G, Lemanceau P (2003) Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23:407–418. CrossRefGoogle Scholar
  33. Goicoechea N (2009) To what extent are soil amendments useful to control Verticillium wilt? Pest Manag Sci 65:831–839. CrossRefGoogle Scholar
  34. Goicoechea A, Aguirreolea J, Cenoz S, García-Mina JM (2001) Gas exchange and flowering in Verticillium-wilted pepper plants. J Phytopathol 149:281–286. CrossRefGoogle Scholar
  35. Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant Growth and Health Promoting Bacteria, vol 18. Part of the Microbiology Monographs book series (MICROMONO), pp 333–364.
  36. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling processes. Soil Biol Biochem 37:395–412. CrossRefGoogle Scholar
  37. Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969. CrossRefGoogle Scholar
  38. Han JH, Shim H, Shin JH, Kim KS (2015a) Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C.gloeosporioides in South Korea. Plant Pathol J 31:165–175. CrossRefGoogle Scholar
  39. Han Y, Zhang B, Shen Q, You C, Yu Y, Li P, Shang Q (2015b) Purification and identification of two antifungal cyclic peptides produced by Bacillus amyloliquefaciens L-H15. Appl Biochem Biotechnol 176:2202–2212. CrossRefGoogle Scholar
  40. Hinarejos E, Castellano M, Rodrigo I, Bellés JM, Conejero V, López-Gresa MP, Lisón P (2016) Bacillus subtilis IAB/BS03 as a potential biological control agent. Eur J Plant Pathol 146:597–608. CrossRefGoogle Scholar
  41. Issar S, Sharma S, Choudhary DK, Gautam HK, Gaur RK (2012) Molecular characterization of Pseudomonas spp. isolated from root nodules of various leguminous plants of Shekhawti Rgion, Rajasthan, India. Am J Plant Sci 3:60–63. CrossRefGoogle Scholar
  42. Jahanshir A, Vahid F, Javadi T, Javad N (2016) Antifungal effect of plant essential oils on controlling Phytophthora species. Plant Pathol J 32:16–24. CrossRefGoogle Scholar
  43. Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of apple. Sci Hortic 114:16–20. CrossRefGoogle Scholar
  44. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507. CrossRefGoogle Scholar
  45. Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311:152–159. CrossRefGoogle Scholar
  46. Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J (2018) Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J 16:86–99. CrossRefGoogle Scholar
  47. Liu J, Zhou T, He D, Li XZ, Wu H, Liu W, Gao X (2011) Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 20:43–52. CrossRefGoogle Scholar
  48. López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. J Plant Soil 344:1–50. CrossRefGoogle Scholar
  49. Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556. CrossRefGoogle Scholar
  50. Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2016) Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl 61:293–303. CrossRefGoogle Scholar
  51. Mehnaz S, Kowalik T, Reynolds B, Lazarovits G (2010) Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biol Biochem 42:1848–1856. CrossRefGoogle Scholar
  52. Nawaz HH, Rajaofera MJN, He Q, Anam U, Lin C, Miao W (2018) Evaluation of antifungal metabolites activity from bacillus licheniformis OE-04 against Colletotrichum gossypii. Pestic Biochem Physiol 146:33–42. CrossRefGoogle Scholar
  53. Novo M, Silvar C, Merino F, Martínez-Cortés T, Lu F, Ralph J, Pomar F (2017) Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb. Plant Sci 258:12–20. CrossRefGoogle Scholar
  54. Ouzari H, Khsairi A, Raddadi N, Jaoua L, Hassen A, Zarrouk M, Daffonchio D, Boudabous A (2008) Diversity of auxin producing bacteria associated to Pseudomonas savastanoiinduced olive knots. J Basic Microbiol 48:370–377. CrossRefGoogle Scholar
  55. Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133. CrossRefGoogle Scholar
  56. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415. CrossRefGoogle Scholar
  57. Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900. CrossRefGoogle Scholar
  58. Rekanovic E, Milijasevic S, Todorovic B, Potocnik I (2007) Possibilities of biological and chemical control of Verticillium wilt in pepper. Phytoparasitica 35:436–441. CrossRefGoogle Scholar
  59. Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48. CrossRefGoogle Scholar
  60. Sarrangi NP, Athukorala WG, Dilantha F, Khalid YR (2009) Identification of antifungal antibiotics of Bacillus species isolates from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55:1021–1032. CrossRefGoogle Scholar
  61. Shakeel M, Rais A, Hassan MN, Hafees YF (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati Rice (Oryza sativa) varieties. Front Microbiol 6(1286).
  62. Singh R, Kapil DP, Kumar A, Singh M (2017) PGPR isolates from the rhizosphere of vegetable crop Momordica charantia: characterization and application as biofertilizer. Int J Curr Microbiol App Sci 6:1789–1802. Google Scholar
  63. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of leu 7- surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292. CrossRefGoogle Scholar
  64. Soares MA, Li HY, Bergen M, da Silva JM, Kowalski KP, White JF (2016) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.). Plant Soil 405:107–123. CrossRefGoogle Scholar
  65. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–178. CrossRefGoogle Scholar
  66. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:854–857. Google Scholar
  67. Teodoro CEDS, Martins MLL (2000) Culture conditions for the production of thermostable amylase by Bacillus sp. Braz J Microbiol 31:298–302. CrossRefGoogle Scholar
  68. Thabti W, Riahi Y, Gharsalli R, Belhaj O (2016) Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia. Acta Biochim Pol 63:581–587. Google Scholar
  69. Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou PP, Katinakis P (2004) Selection and screening of Endorhizosphere bacteria from solarized soils as Biocontrol agents against Verticillium dahliae of Solanaceous hosts. Eur J Plant Pathol 110:35–44. CrossRefGoogle Scholar
  70. Torres MJ, Brandan P, Petroselli G, Erra- Balsells R, Audisio MC (2016) Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol Res 182:31–39. CrossRefGoogle Scholar
  71. Trapero C, Diez CM, Rallo L, Barranco D, Lopez-Escudero FJ (2013) Effective inoculation methods to screen for resistance to Verticillium wilt in olive. Sci Hortic 162:252–259. CrossRefGoogle Scholar
  72. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting Rhizobacteria isolated from Rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496. CrossRefGoogle Scholar
  73. Usami T, Abiko M, Shishido M, Amemiya Y (2002) Specific detection of tomato pathotype of Verticillium dahliae by PCR assays. J Gen Plant Pathol 68:134–140. CrossRefGoogle Scholar
  74. Van Loon L, Bakker P (2005) Induced systemic resistance as a mechanism of disease suppression by Rhizobacteria. In: Siddiqui ZA (ed) PGPR: Biocontrol and biofertilization. Springer, Dordrecht, pp 39–36CrossRefGoogle Scholar
  75. Vimal SR, Gupta J, Singh J (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res 9(7462).
  76. Wei F, Fan R, Dong H, Shang W, Xu X, Zhu H, Yang J, Hu X (2015) Threshold microsclerotial inoculum for cotton Verticillium wilt determined through wet-sieving and real time quantitative PCR. Phytopathol 105:220–229. CrossRefGoogle Scholar
  77. Wragga P, Randall L, Whatmore AM (2014) Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. J Microbiol Methods 105:16–21. CrossRefGoogle Scholar
  78. Xu SJ, Hwan PD, Kim JY, Kim BS (2016) Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop Plant Pathol 41:169–176. CrossRefGoogle Scholar
  79. Yang R, Fan X, Cai X, Hu F (2014) The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight. Biol Control 85:59–67. CrossRefGoogle Scholar
  80. Yin LJ, Tai HM, Jiang ST (2012) Characterization of mannanase from a novel mannanase-producing bacterium. J Agric Food Chem 60:6425–6431. CrossRefGoogle Scholar
  81. Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145. CrossRefGoogle Scholar
  82. Zeriouh H, Romero D, Gutierrez GL, Cazorla FM, De Vicente A, Perez-García A (2011) The iturin like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Interact 24:1540–1552. CrossRefGoogle Scholar
  83. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. CrossRefGoogle Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Khadidja Guenoun
    • 1
    Email author
  • Mayssa Chattaoui
    • 2
  • Meriam Bouri
    • 2
  • Ali Rhouma
    • 2
  • Karim Naghmouchi
    • 3
    • 4
  • Aly Raies
    • 1
  1. 1.Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de TunisUniversité de Tunis El-ManarTunisTunisia
  2. 2.Laboratoire d’amélioration et de protection des ressources génétiques de l’olivierInstitut de l’OlivierTunisTunisia
  3. 3.College of Clinical Pharmacy, Department of Pharmaceutical ChemistryAl Baha UniversityAl BahaSaudi Arabia
  4. 4.Faculté des Sciences de Tunis, LR01ES05 Biochimie et BiotechnologieUniversité de Tunis El ManarTunisTunisia

Personalised recommendations