, Volume 74, Issue 3, pp 325–333 | Cite as

Occurrence of risk factors and antimicrobial resistance due to genes encoding extended–spectrum β-lactamase (ESBL) – and/or AmpC β-lactamase–producing Escherichia coli isolated from the hospitalised patients

  • Ján KoreňEmail author
  • Vladimír Hrabovský
  • Marta Kmeťová
  • Leonard Siegfried
  • Magdaléna Röderová
  • Ján Luha
  • Adriana Liptáková
Original Article


This survey was focused to gain insight into the emergence of antimicrobial resistance mechanisms within overall of 913 Escherichia coli isolates and risk factors for cohort of 77 randomly selected patients. Host–related risk factors mostly involved lower urinary tract disease 50 (64.9%) times, renal insufficiency in 28 (36.4%) subjects, introduced urinary catheter in 43 (55.8%) as well as previous antibiotic therapy within 66 (85.7%) patients. Out of all investigated E. coli, 726 (79.5%) were determined as ESBL producers, 43 (4.7%) ESBL and AmpC producers, 46 (5.1%) AmpC positive and 87 (9.5%) were multidrug–resistant. Most of the times were revealed the following genes: blaCTX–M 767 (84.0%, p < 0.001), blaTEM 682 (74.7%, p < 0.001), blaSHV 89 (9.7%, p = 0.001). Less frequently accounted for resistance determinants as follows genes: blaCIT 38 (4.2%), blaDHA 32 (3.5%, p = 0.001), blaEBC 17 (1.9%, p < 0.001) and blaFOX 21 (2.3%, p < 0.05). Concerning 32 (3.5%) E. coli isolates from bloodstream infections, 26 (81.2%) posed CTX–M-15 producers and 2 (6.2%) isolates were CTX–M-3 originators. Within presumed E. coli pathogens, RFLP assessment exhibited in 2 patterns extended–spectrum character of mutations on blaTEM genes encoding positions considering amino acid sites 104, 238 and 240. Regarding antimicrobial resistance, the lowest rate was ascertained toward meropenem (0.4%), ertapenem (3.8%), tigecycline (1.4%) and amikacin (6.3%).


Escherichia coli Risk factors Resistance genes ESBL AmpC Antimicrobial resistance 



The study was supported by the projects VEGA 1/0857/10 and APVV-16-0173 Ministry of School of the Slovak Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arlet G, Brami G, Décrè D, Flippo A, Gaillot O, Lagrange PH, Philippon A (1995) Molecular characterisation by PCR–restriction fragment length polymorphism of TEM β-lactamases. FEMS Microbiol Lett 134:203–208Google Scholar
  2. Barbier F, Pommier C, Essaied W, Garrouste–Orgeas M, Schwebel C, Ruckly S, Dumenil AS, Lemiale V, Mourvillier B, Clec’h C, Darmon M, Lauren V, Marcotte G, Lucet JC, Souweine B, Zahar JR, Timsit JF, on behalf of the OUTCOMEREA study group† (2016) Colonization and infection with extended-spectrum β-lactamase–producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure? J Antimicrob Chemother 70:1088–1097. CrossRefGoogle Scholar
  3. Blanc V, Leflon–Guibout V, Blanco J, Haenni M, Madec JY, Rafignon G, Bruno P, Mora A, Lopez C, Dahbi G, Dunais B, Anastay M, Branger C, Moreau R, Pradier C, Nicolas–Chanoine MH (2014) Prevalence of day–care centre children (France) with faecal CTX–M–producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. J Antimicrob Chemother 69:1231–1237. CrossRefGoogle Scholar
  4. Bush K, Jacoby GA (2010) MINIREVIEW updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976. CrossRefGoogle Scholar
  5. Chanawong A, MʼZali FH, Heritage J, Lulitanond A, Hawkey PM (2000) Characterisation of extended–spectrum β-lactamases of the SHV family using a combination of PCR–single strand conformational polymorphism (PCR–SSCP) and PCR–restriction fragment length polymorphism (PCR–RFLP). FEMS Microbiol Lett 184:85–89Google Scholar
  6. Corvec S, Caroff N, Espaze E, Marraillac J, Reynaud A (2002) 11 mutation in the ampC promoter increasing resistance to β-lactams in a clinical Escherichia coli strain. Antimicrob Agents Chemother 46:3265–3267. CrossRefGoogle Scholar
  7. Čurová K, Kmeťová M, Sabol M, Gombošová L, Lazúrová I, Siegfried L (2009) Enterovirulent E. coli in inflammatory and noninflammatory bowel diseases. Folia Microbiol 54:81–86 CrossRefGoogle Scholar
  8. Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N (2012) Characterization of plasmids encoding extended-spectrum-β-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 67:878–885. CrossRefGoogle Scholar
  9. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L (2003) Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumonie in Russian hospitals. Antimicrob Agents Chemother 47:3724–3732. CrossRefGoogle Scholar
  10. Foxman B (2013) Extended-spectrum β-lactamase-producing Escherichia coli in the United States: time to rethink empirical treatment for suspected E. coli infections? Clin Infect Dis 56:649–651. CrossRefGoogle Scholar
  11. Gattringer R, Niks M, Ostertág R, Schwarz K, Medvedovic H, Graninger W, Georgopoulos A (2002) Evaluation of MIDITECH automated colorimeter MIC reading for antimicrobial susceptibility testing. J Antimicrob Chemother 49:651–659CrossRefGoogle Scholar
  12. Geyer CN, Reisbig MD, Hanson ND (2012) Development of TaqMan multiplex PCR assay for detection of plasmid-mediated AmpC β-lactamase genes. J Clin Microbiol 50:3722–3725. CrossRefGoogle Scholar
  13. Gilbert DN, Chambers HF, Eliopoulos GME, Saag MS, Pavia AT, Black D, Freedman DO, Kim K, Schwartz BS (2017) The Sanford guide to antimicrobial therapy 2017, Antimicrobial therapy, Inc. Sperryville USAGoogle Scholar
  14. Grover CN, Sahni BAK, Bhattacharya CS(R) (2013) Therapeutic challenges of ESBL and AmpC beta-lactamase producers in a tertiary care center. Med J Armed Forces India 69:4–10. CrossRefGoogle Scholar
  15. Hilty M, Betsch BY, Bögli-Stuber K, Heininger N, Stadler M, Küffer M, Kronenberg A, Rohrer C, Aebi S, Endimiani A, Droz S, And Mühlemann K (2012) Transmission dynamics of extended-spectrum-β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis 55:967–975. CrossRefGoogle Scholar
  16. Hrabák J, Chudáčková E (2008) Carbapenem resistance in Enterobacteria. Epidemiol Mikrobiol Imunol 57:125–136Google Scholar
  17. Humphries RM, McKinnell JA (2015) Continuing challenges for the clinical laboratory for detection of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 53:3712–3714. CrossRefGoogle Scholar
  18. Husičková V, Chromá M, Kolář M, Hricová K, Štosová T, Kantor L, Dubrava L (2011) Analysis of ESBL- and AmpC-positive Enterobacteriaceae at the department of neonatology, University Hospital Olomouc. Curr Microbiol 62:1664-1670. CrossRefGoogle Scholar
  19. Husičková V, Cekanová L, Chromá M, Htoutou-Sedláková M, Hricová K, Koláŕ M (2012) Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subject and hospitalized patients in the Czech Republic. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156:348–353. CrossRefGoogle Scholar
  20. Kaczmarek A, Skowron K, Budzyńska A, Grudlewska K, Gospodarek-Komkowska E (2017) Virulence genes and antimicrobial susceptibility of lactose-negative and lactose-positive strains of Escherichia coli isolated from pregnant women and neonates. Folia Microbiol 62:363–371. CrossRefGoogle Scholar
  21. Knudsen JD, Andersen SE, for the Bispebjerg intervention group (2014) A multidisciplinary intervention to reduce infections of ESBL- and AmpC-producing, gram-negative bacteria at a university hospital. PLoS One 9:e86457. CrossRefGoogle Scholar
  22. Lafolie J, Nicolas-Chanoine MH, Grenouillet F, Hocquet D, Bertrand X (2014) Prevalence of Escherichia coli sequence type 131 and its H30 subclone among E. coli isolates in a French hospital. Int J Antimicrob Agents 44:466–468. CrossRefGoogle Scholar
  23. Leinberger DM, Grimm V, Rubtsova M, Weile J, Schröppel K, Wichelhaus TA, Knabbe C, Schmid RD, Bachmann TT (2010) Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. J Clin Microbiol 48:460–471. CrossRefGoogle Scholar
  24. Lesho E, Chukwuma U, Sparks M, Neumann C, Richesson D, Clifford R, Gierhard S, Waterman P, Hinkle M (2016) Anatomic, geographic, and taxon-specific relative risks of carbapenem resistance in the health care system of the U.S. department of defense. J Clin Microbiol 54:1546–1155. CrossRefGoogle Scholar
  25. Mabilat C, Courvalin P (1990) Development of "oligotyping" for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae. Antimicrob Agents Chemother 34:2210–2216CrossRefGoogle Scholar
  26. March A, Aschbacher R, Dhanji H, Livermore DM, Böttcher A, Sleghel F, Maggi S, Noale M, Larcher C, And Woodford N (2010) Colonization of residents and staff of a long-term-care facility and adjacent acute care hospital geriatric unit by multiresistant bacteria. Clin Microbiol Infect 16:934–944. CrossRefGoogle Scholar
  27. M'zali F, Gascoyne-Binzi DM, Heritage J, Hawkey PM (1996) Detection of mutation conferring extended-spectrum activity on SHV β-lactamases using polymerase chain reaction single strand conformational polymorphism (PCR-SSCP). J Antimicrob Chemother 37:797–802CrossRefGoogle Scholar
  28. Nordman P, Poirel L, Dortet L (2012) Rapid detection of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 18:1503–1507. CrossRefGoogle Scholar
  29. Olesen B, Hansen DS, Nilsson F, Frimodt-Møller J, Leihof RF, Struve C, Scheutz F, Johnston B, Krogfelt KA, Johnson JR (2013) Prevalence and characteristics of the epidemic multiresistant Escherichia coli ST131 clonal group among extended-spectrum β-lactamase-producing E. coli isolates in Copenhagen, Denmark. J Clin Microbiol 51:1779–1785. CrossRefGoogle Scholar
  30. Peirano G, Bij AK, Gregson DB, Pitout JDD (2012) Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum β-lactamase-producing Escherichia coli causing bacteremia in centralized Canadian region. J Clin Microbiol 50:294–299. CrossRefGoogle Scholar
  31. Pérez-Pérez F, Hanson ND (2002) Detection of plastid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162. CrossRefGoogle Scholar
  32. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Hombach M (2012) Comparison of European committee on antimicrobial susceptibility testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum β-lactamase production in clinical Enterobacteriaceae isolates. J Antimicrob Chemother 67:159–166. CrossRefGoogle Scholar
  33. Reuland EA, Naiemi N, Kaiser AM, Heck M, Kluytmans JAJW, Savelkkoul PHM, Elders PJM, Vandenbroucke-Grauls CMJE (2016) Prevalence in risk factors for carriage of ESBL-producing Enterobacteriaceae in Amsterdam. J Antimicrob Chemother 71:1076–1082. CrossRefGoogle Scholar
  34. Rodrigues C, Machado E, Fernandes S, Peixe L, Novais A (2016) An update on carriage of ESBL-producing Enterobacteriaceae by Portuguese healty humans: detection of the H30 subclone of B2-ST131 Escherichia coli producing CTX-M-27. J Antimicrob Chemother Research letter.
  35. Rodríguez-Baño J, Picón E, Gijón P, Hernández JR, Cisneros JM, Peña C, Almela M, Almirante B, Grill F, Colomina J, Molinos S, Oliver A, Fernández-Mazarrasa C, Navarro G, Coloma A, López-Cerero L, Pascual A (2010) Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli. J Clin Microbiol 48:1726–1731. CrossRefGoogle Scholar
  36. Sittová M, Dendis M, Dosoudilová Š, Horváth R, Chromá M, Husičková V, Hricová K, Kolář M (2013) Rychlá identifikace ESBL-pozitivních klinických vzorků metodou real-time PCR. Klin Mikrobiol Infekc Lek 19:80–84Google Scholar
  37. Tamma PD, Rodríguez-Baño J (2017) The use of noncarbapenem β-lactams for the treatment of extended-spectrum-β-lactamase infections. Clin Infect Dis 64:972–980. CrossRefGoogle Scholar
  38. Thomson KS (2010) COMMENTARY extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol 48:1019–1025. CrossRefGoogle Scholar
  39. Tschudin-Sutter S, Frei R, Dangel M, Stranden A, Widmer AF (2012) Rate of transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae without contact isolation. Clin Infect Dis 55:1505–1511. CrossRefGoogle Scholar
  40. Tumbarello M, Sali M, Trecarichi EM, Leone F, Rossi M, Fiori B, Pascale GD, D’Inzeo T, Sanguinetti M, Fadda G, Cauda R, Spanu T (2008) Bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli: risk factors for inadequate initial antimicrobial therapy. Antimicrob Agents Chemother 52:3244–3252. CrossRefGoogle Scholar
  41. Valsesia G, Roos M, Böttger EC, Hombach M (2015) A statistical approach for determination of disk diffusion-based cutoff values for systematic characterization of wild-type and non-wild-type bacterial populations in antimicrobial susceptibility testing. J Clin Microbiol 53:1812–1822. CrossRefGoogle Scholar
  42. Vehreschild MJG, Hamprecht A, Peterson L, Schubert S, Häntschel M, Peter S, Schafhausen P, Rohde H, Lilienfeld-Toal M, Bekeredjian-Ding I, Libam J, Hellmich M, Vehreschild JJ, Cornely OA, and Seifert H (2014) A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother 69:3387–3392.

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Ján Koreň
    • 1
    Email author
  • Vladimír Hrabovský
    • 2
  • Marta Kmeťová
    • 2
  • Leonard Siegfried
    • 2
  • Magdaléna Röderová
    • 3
  • Ján Luha
    • 4
  • Adriana Liptáková
    • 1
  1. 1.Institute of Microbiology, Faculty of MedicineComenius University (CU) and University Hospital Bratislava (UHB)BratislavaSlovak Republic
  2. 2.Department of Medical and Clinical Microbiology, Faculty of MedicinePavol Jozef Šafárik University and Louis Pasteur University HospitalKošiceSlovak Republic
  3. 3.Department of Microbiology Faculty of Medicine and DentistryPalacký University OlomoucOlomoucCzech Republic
  4. 4.Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of MedicineComenius University and University Hospital BratislavaBratislavaSlovak Republic

Personalised recommendations