Advertisement

Comparison of Four Parasitological Techniques for Laboratory Diagnosis of Eggs from Spirometra spp. in Wild Mammal Fecal Samples

  • Laís Verdan DibEmail author
  • João Pedro Siqueira Palmer
  • Camila de Souza Carvalho Class de Lima
  • Raissa Cristina Ferreira Ramos
  • Otilio Machado Pereira Bastos
  • Claudia Maria Antunes Uchôa
  • Maria Regina Reis Amendoeira
  • Ana Beatriz Monteiro Fonseca
  • Augusto Cezar Machado Pereira Bastos
  • Alynne da Silva Barbosa
Short Communication

Abstract

Purpose

This study aimed to compare the performance of four different microscopic coproparasitological techniques in relation to egg recovering and the frequency of alterations in the eggs observed through each technique.

Methods

A total of 213 fecal samples from free-living carnivorous mammals were collected between 2017 and 2018 in Itatiaia National Park, RJ, Brazil. Faust and modified Sheather floatation techniques as well as Lutz and modified Ritchie sedimentation techniques were applied.

Results

The total positivity rate for Spirometra spp. eggs was 24.4%, and these were detected mainly through Lutz and modified Ritchie sedimentation techniques, with substantial agreement (kappa = 0.73; p = 0.00 < 0.05; McNemar p value = 1.0; Fisher’s exact test p = 0.616). Faust and modified Sheather flotation techniques did not present good egg recovery, with frequencies of 6.6% and 7.5%, respectively. Eggs with morphological alterations were mostly observed through Faust (17.3%) and modified Sheather (13.5%). Both flotation techniques presented statistically significant frequencies of deformed eggs, in comparison with the sedimentation techniques (p = 0.00). Low frequencies of deformed eggs were observed when the samples were analyzed through modified Ritchie and Lutz sedimentation techniques.

Conclusions

From these results, sedimentation techniques such as modified Ritchie and Lutz methods were more efficient for diagnosing the eggs of this helminth in fecal material from free-living carnivores and should always be used when analyzing fecal samples from hosts of different species.

Keywords

Spirometra Laboratory diagnosis Carnivores Wildlife Feces 

Notes

Acknowledgements

The authors thank the Parasitology Laboratory of the Fluminense Federal University, the Itatiaia National Park and its employees, the Laboratory for Toxoplasmosis and Other Protozoan Diseases of the Oswaldo Cruz Institute, CAPES and FAPERJ.

References

  1. 1.
    Barbosa ADS, Bastos OMP, Uchôa CMA, Pissinatti A, Bastos ACMP, Souza IVD, Dib LV, Azevedo EP, Siqueira MP, Cardozo ML, Amendoeira MRR (2016) Comparison of five parasitological techniques for laboratory diagnosis of Balantidium coli cysts. Rev Bras Parasitol Vet 25:286–292.  https://doi.org/10.1590/S1984-29612016044 CrossRefGoogle Scholar
  2. 2.
    Bartlett MS, Harper K, Smith N, Verbanac P, Smith JW (1978) Comparative evaluation of a modified zinc sulfate flotation technique. J Clin Microbiol 7:524–528Google Scholar
  3. 3.
    Beltrán-Saavedra LF, Angulo S, Gonzales JL (2009) Uso de metodolo-gías de censos muestrales indirectos de fecas para evaluar endoparásitos en mamíferos silvestres: un ensayo en la Reserva Privada de San Miguelito, Santa Cruz, Bolivia. Ecol Bolív 44:56–61Google Scholar
  4. 4.
    Borges PL, Tomás WM (2008) Guia de rastros e outros vestígios de mamíferos do Pantanal. Embrapa Pantanal, CorumbáGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention (CDC) (2013) Diphyllobothriasis. http://www.cdc.gov/dpdx/Diphyllobothriasis/index.html. Accessed 3 September 2018
  6. 6.
    Chame M (2003) Terrestrial mammal feces: a morphometric summary and description. Mem Inst Oswaldo Cruz 98:71–94.  https://doi.org/10.1590/S0074-02762003000900014 CrossRefGoogle Scholar
  7. 7.
    Conboy G (2009) Cestodes of dogs and cats in North America. Vet Clin N Am Small Anim Pract 39:1075–1090.  https://doi.org/10.1016/j.cvsm.2009.06.005 CrossRefGoogle Scholar
  8. 8.
    Dib LV, Cronemberger C, Pereira FDA, Bolais PF, Uchôa CMA, Bastos OMP, Amendoeira MRR, Barbosa ADS (2018) Gastrointestinal parasites among felids inhabiting the Serra dos Órgãos National Park, Rio de Janeiro, Brazil. Revi Bras Parasitol Vet 27:131–140.  https://doi.org/10.1590/S1984-296120180016 CrossRefGoogle Scholar
  9. 9.
    Dryden MW, Payne PA, Ridley R, Smith V (2005) Comparison of common fecal flotation techniques for the recovery of parasite eggs and oocysts. Vet Ther 6:15–28Google Scholar
  10. 10.
    Faust EC, D’Antoni JS, Odom V, Miller MJ, Peres C, Sawitz W, Thomen LF, Tobie J, Walker JH (1938) A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces. I. Preliminary communication. Am J Trop Med Hyg 18:169–183.  https://doi.org/10.4269/ajtmh.1938.s1-18.169 CrossRefGoogle Scholar
  11. 11.
    Fiorello CV, Robbins RG, Maffei L, Wade SE (2006) Parasites of free-ranging small canids and felids in the Bolivian Chaco. J Zoo Wildl Med 37:130–134.  https://doi.org/10.1638/05-075.1 CrossRefGoogle Scholar
  12. 12.
    Huber F, Bonfim TC, Gomes RS (2003) Comparação da eficiência da técnica de sedimentação pelo formaldeído-éter e da técnica de centrífugo-flutuação modificada na detecção de cistos de Giardia sp. e oocistos de Cryptosporidium sp. em amostras fecais de bezerros. Rev Bras Parasitol Vet 12:135–137Google Scholar
  13. 13.
    ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade (2013) Plano de Manejo do Parque Nacional do Itatiaia. Encarte 3. http://www.icmbio.gov.br/portal/component/content/article?id=2181:parna-do-itatiaia. Accessed 1 October 2018
  14. 14.
    Kuchta R, Scholz T, Brabec J, Narduzzi-Wicht B (2015) Diphyllobothrium, Diplogonoporus and Spirometra. In: Xiao L, Ryan U, Feng Y (eds) Handbook of foodborne diseases, 1st edn. CRC Press, Florida, pp 299–326Google Scholar
  15. 15.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174.  https://doi.org/10.2307/2529310 CrossRefGoogle Scholar
  16. 16.
    Lutz A (1919) O Schistosomum mansoni e a schistosomatose segundo observações feitas no Brasil. Mem Inst Oswaldo Cruz 11:121–155.  https://doi.org/10.1590/S0074-02761919000100006 CrossRefGoogle Scholar
  17. 17.
    Müller-Graf CDM (1995) A coprological survey of intestinal parasites of wild lions (Panthera leo) in the Serengeti and the Ngorongoro Crater, Tanzania, east Africa. J Parasitol 81:812–814.  https://doi.org/10.2307/3283987 CrossRefGoogle Scholar
  18. 18.
    Patton S, Rabinowitz AR (1994) Parasites of wild felidae in Thailand: a coprological survey. J Wildl Dis 30:472–475.  https://doi.org/10.7589/0090-3558-30.3.472 CrossRefGoogle Scholar
  19. 19.
    Ritchie LS (1948) An ether sedimentation technique for routine stool examinations. U S Army Med Dep Bull. 8:326Google Scholar
  20. 20.
    Scholz T, Garcia HH, Kuchta R, Wicht B (2009) Update on the human broad tapeworm (Genus Diphyllobothrium), including clinical relevance. Clin Microbiol Rev 22:146–160.  https://doi.org/10.1128/CMR.00033-08 CrossRefGoogle Scholar
  21. 21.
    Sheather AL (1923) The detection of intestinal protozoa and mange parasites by a flotation technique. J Comp Pathol 36:266–275.  https://doi.org/10.1016/s0368-1742(23)80052-2 CrossRefGoogle Scholar
  22. 22.
    Solórzano-García B, White-Day JM, Gómez-Contreras M, Cristóbal-Azkárate J, Osorio-Sarabia D, Rodríguez-Luna E (2017) Coprological survey of parasites of free-ranging jaguar (Panthera onca) and puma (Puma concolor) inhabiting 2 types of tropical forests in Mexico. Rev Mex Biodivers 88:146–153.  https://doi.org/10.1016/j.rmb.2017.01.011 CrossRefGoogle Scholar
  23. 23.
    Srbek-Araujo AC, Santos JLC, Almeida VMD, Guimarães MP, Chiarello AG (2014) First record of intestinal parasites in a wild population of jaguar in the Brazilian Atlantic Forest. Rev Bras Parasitol Vet 23:393–398.  https://doi.org/10.1590/S1984-29612014065 CrossRefGoogle Scholar
  24. 24.
    Szczęsna J, Popiołek M, Schmidt K, Kowalczyk R (2008) Coprological study on helminth fauna in Eurasian Lynx (Lynx lynx) from the Białowieża Primeval Forest in eastern Poland. J Parasitol 94:981–985.  https://doi.org/10.1645/GE-1440.1 CrossRefGoogle Scholar
  25. 25.
    Táparo CV, Perri SH, Serrano ACM, Ishizaki MN, da Costa TP, do Amarante AF, Bresciani KD (2006) Comparação entre técnicas coproparasitológicas no diagnóstico de ovos de helmintos e oocistos de protozoários em cães. Rev Bras Parasitol Vet 15:1–5Google Scholar
  26. 26.
    Tibiriçá SHC, Abramo C, Simões AS, de Oliveira Pinheiro I, Ribeiro LC, Coimbra ES (2009) Validação do número de lâminas para realização do método de sedimentação espontânea das fezes. Hu Rev 35:105–110Google Scholar
  27. 27.
    Truant AL, Elliott SH, Kelly MT, Smith JH (1981) Comparison of formalin-ethyl ether sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation techniques for detection of intestinal parasites. J Clin Microbiol 13:882–884Google Scholar
  28. 28.
    Wrublewski DM, Kusma SC, Teixeira VN (2018) Parasitos gastrointestinais em Puma concolor, Puma yagouaroundi e Leopardus pardalis (Carnivora: Felidae) na Floresta Nacional de Três Barras, SC, Brasil. Rev Acad Ciênc Anim 16:1–8.  https://doi.org/10.7213/1981-4178.2018.16004 CrossRefGoogle Scholar
  29. 29.
    Young KH, Bullock SL, Melvin DM, Spruill CL (1979) Ethyl Acetate as a substitute for diethyl ether in the formalin-ether sedimentation technique. J Clin Microbiol 10:852–853Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • Laís Verdan Dib
    • 1
    Email author
  • João Pedro Siqueira Palmer
    • 1
  • Camila de Souza Carvalho Class de Lima
    • 1
  • Raissa Cristina Ferreira Ramos
    • 1
    • 2
    • 3
  • Otilio Machado Pereira Bastos
    • 1
  • Claudia Maria Antunes Uchôa
    • 1
  • Maria Regina Reis Amendoeira
    • 2
  • Ana Beatriz Monteiro Fonseca
    • 3
  • Augusto Cezar Machado Pereira Bastos
    • 1
  • Alynne da Silva Barbosa
    • 1
    • 2
  1. 1.Department of Microbiology and Parasitology, Biomedical InstituteFluminense Federal UniversityNiteróiBrazil
  2. 2.Laboratory for Toxoplasmosis and Other Protozoan Diseases, Oswaldo Cruz InstituteOswaldo Cruz Foundation (Fiocruz Rio de Janeiro)ManguinhosBrazil
  3. 3.Statistics Laboratory, Mathematics and Statistics InstituteFluminense Federal UniversityNiteróiBrazil

Personalised recommendations