Advertisement

De Novo RNA-seq and Functional Annotation of Haemaphysalis longicornis

  • DongLing Niu
  • YaE ZhaoEmail author
  • YaNan Yang
  • Rui Yang
  • XiaoJuan Gong
  • Li Hu
Original Paper

Abstract

Purpose

Haemaphysalis longicornis (Neumann) is a hematophagous tick widely distributed in northern China. It not only causes enormous economic loss to animal husbandry, but also as a vector and reservoir of various zoonotic pathogens, it spreads natural focal diseases, such as severe fever with thrombocytopenia syndrome, seriously threatening human health. Lack of transcriptomic and genomic data from H. longicornis limits the study of this important medical vector.

Methods

The engorged female H. longicornis from Gansu, China, was used for RNA extraction, de novo RNA-seq, functional annotation, and ORF prediction.

Results

As a result, 53.09 million clean reads (98.88%) with a GC content of 54.29% were obtained. A total of 65,916 Unigenes were assembled, of which 34.59% (23,330) were successfully annotated. Of these Unigenes, 22,587 (34.27%) were annotated to species by NCBI non-redundant protein (nr). Ixodes scapularis, Limulus polyphemus, Parasteatoda tepidariorum, Stegodyphus mimosarum, and Metaseiulus occidentalis were the top BLAST hit species, accounting for 47.23%, 9.58%, 4.11%, 3.50%, and 2.69%, respectively. A total of 29,182 ORFs were predicted, and 35 complete ORFs for functional genes were identified, including ORFs involved in digestion (14), stress responses (8), anticoagulation (3), reproduction (3), antimicrobial (2), drug resistance (2), movement (2), autophagy (1), and immunity (1), respectively. The Unigene ORFs encoding cathepsin and heat shock proteins were further analyzed phylogenetically.

Conclusion

De novo RNA-seq and functional annotation of H. longicornis were successfully completed for the first time, providing a molecular data resource for further research on blood-sucking, pathogen transmission mechanisms, and effective prevention and control strategies.

Keywords

Haemaphysalis longicornis De novo RNA seq Functional annotation ORF Functional gene 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81471972 and 81271856).

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

11686_2019_103_MOESM1_ESM.tif (125 kb)
Fig. S1 The original sequences alignment results of molecular identification and phylogenetic tree of H. longicornis based on mtDNA 16S. represent the mtDNA 16S sequences of H. longicornis obtained in this study. (TIFF 125 kb)

References

  1. 1.
    Barker SC, Murrell A (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129:15–36.  https://doi.org/10.1017/S0031182004005207 CrossRefGoogle Scholar
  2. 2.
    Bensaoud C, Nishiyama MY, Ben Hamda C, Lichtenstein F, de Oliveira UC, Faria F, Junqueira-de-Azevedo ILM, Ghedira K, Bouattour A, M’Ghirbi Y, Chudzinski-Tavassi AM (2018) De novo assembly and annotation of Hyalomma dromedarii tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasites Vectors 11:314.  https://doi.org/10.1186/s13071-018-2874-9 CrossRefGoogle Scholar
  3. 3.
    Busby AT, Ayllon N, Kocan KM, Blouin EF, De La Fuente G, Galindo RC, Villar M, De La Fuente J (2012) Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. Med Vet Entomol 26:92–102.  https://doi.org/10.1111/j.1365-2915.2011.00973.x CrossRefGoogle Scholar
  4. 4.
    Cao C, Wu JB, Cao MH, Song DD, Wang JJ (2016) Epidemiological characteristics of fever with thrombocytopenia syndrome in Anhui province from 2011 to 2015. Chin J Dis Control Prev 20:792–795.  https://doi.org/10.16462/j.cnki.zhjbkz.2016.08.010 Google Scholar
  5. 5.
    Chan TF, Ji KM, Yim AK, Liu XY, Zhou JW, Li RQ, Yang KY, Li J, Li M, Law PT, Wu YL, Cai ZL, Qin H, Bao Y, Leung RK, Ng PK, Zou J, Zhong XJ, Ran PX, Zhong NS, Liu ZG, Tsui SK (2015) The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol 135:539–547.  https://doi.org/10.1016/j.jaci.2014.09.031 CrossRefGoogle Scholar
  6. 6.
    Charrier NP, Couton M, Voordouw MJ, Rais O, Durand-Hermouet A, Hervet C, Plantard O, Rispe C (2018) Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasites Vectors 11:364–378.  https://doi.org/10.1186/s13071-018-2932-3 CrossRefGoogle Scholar
  7. 7.
    Chen Z, Liu Q, Liu JQ, Xu BL, Lv S, Xia S, Zhou XN (2014) Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in central China. Parasites Vectors 7:237–244.  https://doi.org/10.1186/1756-3305-7-237 CrossRefGoogle Scholar
  8. 8.
    Cheng J, Liu CC, Zhao YE, Hu L, Yang YJ, Yang F, Shi ZY (2015) Population identification and divergence threshold in Psoroptidae based on ribosomal ITS2 and mitochondrial COI genes. Parasitol Res 114:3497–3507.  https://doi.org/10.1007/s00436-015-4578-9 CrossRefGoogle Scholar
  9. 9.
    Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a one health perspective. Trends Parasitol 28:437–446.  https://doi.org/10.1016/j.pt.2012.07.003 CrossRefGoogle Scholar
  10. 10.
    Egekwu N, Sonenshine DE, Garman H, Barshis DJ, Cox N, Bissinger BW, Zhu J, Roe RM (2016) Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae). Insect Mol Biol 25:72–92.  https://doi.org/10.1111/imb.12202 CrossRefGoogle Scholar
  11. 11.
    Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, Costa FB, Palmisano G, Labruna MB, Sa-Nunes A, Ribeiro JMC, Fogaca AC (2017) Analysis of the salivary gland transcriptome of unfed and partially fed Amblyomma sculptum ticks and descriptive proteome of the saliva. Front Cell Infect Microbiol 7:476.  https://doi.org/10.3389/fcimb.2017.00476 CrossRefGoogle Scholar
  12. 12.
    Francischetti IMB, Meng ZJ, Mans BJ, Gudderrac N, Veenstrab MTD, Phama VM, Kotsyfakisa M, Ribeiroa JMC (2008) An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion. J Proteom 71:493–512.  https://doi.org/10.1016/j.jprot.2008.07.006 CrossRefGoogle Scholar
  13. 13.
    Garrido PM, Porrini MP, Damiani N, Ruffinengo S, Noel GMAM, Salerno G, Eguaras MJ (2018) Heat shock proteins in Varroa destructor exposed to heat stress and in-hive acaricides. Exp Appl Acarol 76:421–433.  https://doi.org/10.1007/s10493-018-0319-y CrossRefGoogle Scholar
  14. 14.
    Guan GQ, Moreau E, Liu JL, Hao XF, Ma ML, Luo JX, Chauvin A, Yin H (2010) Babesia sp. BQ1 (Lintan): molecular evidence of experimental transmission to sheep by Haemaphysalis qinghaiensis and longicornis. Parasitol Int 59:265–267.  https://doi.org/10.1016/j.parint.2009.12.002 CrossRefGoogle Scholar
  15. 15.
    Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, de la Fuente J, Ribeiro JM, Megy K, Thimmapuram J, Miller JR, Walenz BP, Koren S, Hostetler JB, Thiagarajan M, Joardar VS, Hannick LI, Bidwell S, Hammond MP, Young S, Zeng QD, Abrudan JL, Almeida FC, Ayllon N, Bhide K, Bissinger BW, Bonzon-Kulichenko E, Buckingham SD, Caffrey DR, Caimano MJ, Croset V, Driscoll T, Gilbert D, Gillespie JJ, Giraldo-Calderon GI, Grabowski JM, Jiang D, Khalil SMS, Kim D, Kocan KM, Koci J, Kuhn RJ, Kurtti TJ, Lees K, Lang EG, Kennedy RC, Kwon H, Perera R, Qi YM, Radolf JD, Sakamoto JM, Sanchez-Gracia A, Severo MS, Silverman N, Simo L, Tojo M, Tornador C, Van Zee JP, Vazquez J, Vieira FG, Villar M, Wespiser AR, Yang YL, Zhu JW, Arensburger P, Pietrantonio PV, Barker SC, Shao RF, Zdobnov EM, Hauser F, Grimmelikhuijzen CJP, Park Y, Rozas J, Benton R, Pedra JHF, Nelson DR, Unger MF, Tubio JMC, Tu ZJ, Robertson HM, Shumway M, Sutton G, Wortman JR, Lawson D, Wikel SK, Nene VM, Fraser CM, Collins FH, Birren B, Nelson KE, Caler E, Hill CA (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 7:10507.  https://doi.org/10.1038/ncomms10507 CrossRefGoogle Scholar
  16. 16.
    Horn M, Nussbaumerova M, Sanda M, Kovarova Z, Srba J, Franta Z, Sojka D, Bogyo M, Caffrey CR, Kopacek P, Mares M (2009) Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol 16:1053–1063.  https://doi.org/10.1016/j.chembiol.2009.09.009 CrossRefGoogle Scholar
  17. 17.
    Hu L, Zhao YE, Yang YJ, Niu DL, Wang RL, Cheng J, Yang F (2016) De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis. Parasitol Res 115:2661–2670.  https://doi.org/10.1007/s00436-016-5013-6 CrossRefGoogle Scholar
  18. 18.
    Hu L, Zhao YE, Yang YJ, Niu DL, Yang R, Zeng JH (2019) The construction of full-length cDNA library for Otodectes cynotis. Acta Parasitol 1:1.  https://doi.org/10.2478/s11686-019-00034-y Google Scholar
  19. 19.
    Jiang JF, Jiang BG, Yu JH, Zhang WY, Gao HW, Zhan L, Sun Y, Zhang XA, Zhang PH, Liu W, Wu XM, Xu RM, Cao WC (2011) Anaplasma phagocytophilum infection in ticks, China-Russia border. Emerg Infect Dis 17:932–934.  https://doi.org/10.3201/eid1705.101630 CrossRefGoogle Scholar
  20. 20.
    Krivoruchko A, Storey KB (2010) Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans. J Comp Physiol [B] 180:403–414.  https://doi.org/10.1007/s00360-009-0414-9 CrossRefGoogle Scholar
  21. 21.
    Khanduja S, Ghoshal U, Ghoshal UC (2017) Phylogenetic analysis of genetically distinct Enterocytozoon bieneusi infecting renal transplant recipients. Acta Parasitol 62:63–68.  https://doi.org/10.1515/ap-2017-0007 CrossRefGoogle Scholar
  22. 22.
    Ko SJ, Kang JG, Kim SY, Kim HC, Klein TA, Chong ST, Sames WJ, Yun SM, Ju YR, Chae JS (2010) Prevalence of tick-borne encephalitis virus in ticks from southern Korea. J Vet Med Sci 11:197–203.  https://doi.org/10.4142/jvs.2010.11.3.197 Google Scholar
  23. 23.
    Lee JH, Park HS, Jang WJ, Koh SE, Park TK, Kang SS, Kim BJ, Kook YH, Park KH, Lee SH (2004) Identification of the Coxiella sp detected from Haemaphysalis longicornis ticks in Korea. Microbiol Immunol 48:125–130.  https://doi.org/10.1111/j.1348-0421.2004.tb03498.x CrossRefGoogle Scholar
  24. 24.
    Liang AH, Li XW, Zhang XF (2016) Epidemiological characteristics analysis of fever with thrombocytopenia syndrome in Daiyue district of Tai’an city from 2011 to 2014. Prev Med Trib 22:385–387.  https://doi.org/10.16406/j.pmt.issn.1672-9153.2016.05.022 Google Scholar
  25. 25.
    Liu HH, Li ZY, Wang ZD, He B, Wang SC, Wei F, Tu CC, Liu Q (2016) The first molecular evidence of severe fever with thrombocytopenia syndrome virus in ticks in Jilin, Northeastern China. Ticks Tick-borne Dis 7:1280–1283.  https://doi.org/10.1016/j.ttbdis.2016.06.007 CrossRefGoogle Scholar
  26. 26.
    Liu K, Zhou H, Sun RX, Yao HW, Li Y, Wang LP, Mu D, Li XL, Yang Y, Gray GC, Cui N, Yin WW, Fang LQ, Yu HJ, Cao WC (2015) A national assessment of the epidemiology of severe fever with thrombocytopenia syndrome. China. Sci Rep 5:9679.  https://doi.org/10.1038/srep09679 CrossRefGoogle Scholar
  27. 27.
    Luo LM, Sun JM, Yan JB, Wang CW, Zhang ZT, Zhao L, Han HJ, Tong ZD, Liu MM, Wu YY, Wen HL, Zhang R, Xue ZF, Sun XF, Li KF, Ma DQ, Liu JW, Huang YT, Ye L, Li WQ, Jiang JM, Yu XJ (2016) Detection of a novel Ehrlichia species in Haemaphysalis longicornis tick from China. Vector-Borne Zoonotic Dis 16:363–367.  https://doi.org/10.1089/vbz.2015.1898 CrossRefGoogle Scholar
  28. 28.
    Ma KX, Chen GW (2012) cDNA cloning of heat shock protein 90 gene and protein expression pattern in response to heavy metal exposure and thermal stress in planarian Dugesia japonica. Mol Biol Rep 39:7203–7210.  https://doi.org/10.1007/s11033-012-1552-9 CrossRefGoogle Scholar
  29. 29.
    Ma T, Xu Q, Li C, Zhang ZF, Luo J, Li W, Xu YT, Sui HT, Hong L (2017) Epidemiological characteristics analysis of fever with thrombocytopenia syndrome in Nanjing city from 2010 to 2016. Modern Prev Med 44:2890–2894Google Scholar
  30. 30.
    Maruyama SR, Garcia GR, Teixeira FR, Brandão LG, Anderson JM, Ribeiro JMC, Valenzuela JG, Horackova J, Veríssimo CJ, Katiki LM, Banin TM, Zangirolamo AF, Gardinassi LG, Ferreira BR, de Miranda-Santos IKF (2017) Mining a differential sialotranscriptome of Ripicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasites Vectors 10:206–221.  https://doi.org/10.1186/s13071-017-2136-2 CrossRefGoogle Scholar
  31. 31.
    Moreira HNS, Barcelos RM, Vidigal PMP, Klein RC, Montandon CE, Maciel TEF, Carrizo JFA, de Lima PHC, Soares AC, Martins MM, Mafra C (2017) A deep insight into the whole transcriptome of midguts, ovaries and salivary glands of the Amblyomma sculptum tick. Parasitol Int 66:64–73.  https://doi.org/10.1016/j.parint.2016.10.011 CrossRefGoogle Scholar
  32. 32.
    Niu DL, Wang RL, Zhao YE, Yang R, Hu L (2018) De novo RNA-seq and functional annotation of Ornithonyssus bacoti. Exp Appl Acarol 75:191–208.  https://doi.org/10.1007/s10493-018-02649 CrossRefGoogle Scholar
  33. 33.
    Oleaga A, Obolo-Mvoulouga P, Manzano-Roman R, Perez-Sanchez R (2017) Functional annotation and analysis of the Ornithodoros moubata midgut genesdifferentially expressed after blood feeding. Ticks Tick-Borne Dis 8:693–708.  https://doi.org/10.1016/j.ttbdis.2017.05.002 CrossRefGoogle Scholar
  34. 34.
    Perner J, Provaznik J, Schrenkova J, Urbanova V, Ribeiro JMC, Kopacek P (2016) RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci Rep 6:36695.  https://doi.org/10.1038/srep36695 CrossRefGoogle Scholar
  35. 35.
    Perner J, Kropáčková S, Kopáček P, Ribeiro JMC (2018) Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl Trop Dis 12:e0006410.  https://doi.org/10.1371/journal.pntd.0006410 CrossRefGoogle Scholar
  36. 36.
    Qin XC, Tian JH, Wang JB, Lu X, Sun QZ, Jin D, Zhou DJ, Xu JG, Zhang YZ (2011) Identification of Haemaphysalis longicornis and Rhipicephalus microplus. Chin J Epidemiol 32:608–612Google Scholar
  37. 37.
    Rangsrikitphoti P, Durnford DG (2019) Transcriptome profiling of Bigelowiella natans in response to light stress. J Eukaryot Microbiol 66:316–333.  https://doi.org/10.1111/jeu.12672 CrossRefGoogle Scholar
  38. 38.
    Ribeiro JMC, Slovák M, Francischetti IMB (2017) An insight into the sialome of Hyalomma excavatum. Ticks Tick-Borne Dis 8:201–207.  https://doi.org/10.1016/j.ttbdis.2016.08.011 CrossRefGoogle Scholar
  39. 39.
    Roberto AB, Felix DG, Michael B, John MC, Brett C, Faye S, Adalberto APL, Robert JM, Sara B, Jason D, Galina M, Keith S, Callum B, Quanzhou T, Robert B, Paula MM, Adam H, Matthew IB (2017) Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. Int J Parasitol 47:569–583.  https://doi.org/10.1016/j.ijpara.2017.03.007 CrossRefGoogle Scholar
  40. 40.
    Rodriguez-Valle M, Moolhuijzen P, Barrero RA, Ong CT, Busch G, Karbanowicz T, Booth M, Clark R, Koehbach J, Ijaz HH, Broady K, Agnew K, Knowles AG, Bellgard MI, Tabor AE (2018) Transcriptome and toxin family analysis of the paralysis tick, Ixodes holocyclus. Int J Parasitol 48:71–82.  https://doi.org/10.1016/j.ijpara.2017.07.007 CrossRefGoogle Scholar
  41. 41.
    Schicht S, Qi WH, Poveda L, Strube C (2014) Whole transcriptome analysis of the poultry red mite Dermanyssus gallinae (De Geer, 1778). Parasitology 141:336–346.  https://doi.org/10.1017/S0031182013001467 CrossRefGoogle Scholar
  42. 42.
    Shim JK, Jung DO, Park JW, Kim DW, Ha DM, Lee KY (2006) Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp Biochem Physiol B-Biochem Mol Biol 145:288–295.  https://doi.org/10.1016/j.cbpb.2006.07.009 CrossRefGoogle Scholar
  43. 43.
    Snoeckx LHEH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497.  https://doi.org/10.1152/physrev.2001.81.4.1461 CrossRefGoogle Scholar
  44. 44.
    Sonenshine DE, Bissinger BW, Egekwu N, Donohue KV, Khalil SM, Roe RM (2011) First Transcriptome of the testis-vas deferens-male accessory gland and proteome of the spermatophore from Dermacentor variabilis (Acari: Ixodidae). PLoS One 6:e24711.  https://doi.org/10.1371/journal.pone.0024711 CrossRefGoogle Scholar
  45. 45.
    Sun JM, Liu QY, Lu L, Ding GQ, Guo JQ, Fu GM, Zhang JB, Meng FX, Wu HX, Song XP, Ren DS, Li DM, Guo YH, Wang J, Li GC, Liu JL, Lin HL (2008) Coinfection with four genera of bacteria (Borrelia, Bartonella, Anaplasma, and Ehrlichia) in Haemaphysalis longicornis and Ixodes sinensis ticks from China. Vector-Borne Zoonotic Dis 8:791–795.  https://doi.org/10.1089/vbz.2008.0005 CrossRefGoogle Scholar
  46. 46.
    Takada N, Ishiguro F, Fujita H, Wang HP, Wang JC, Masuzawa T (1998) Lyme disease spirochetes in ticks from northeastern China. J Parasitol 84:499–504.  https://doi.org/10.2307/3284712 CrossRefGoogle Scholar
  47. 47.
    Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K (2008) A cysteine protease is critical for Babesia spp transmission in Haemaphysalis ticks. Plos Pathogens 4:e1000062.  https://doi.org/10.1371/journal.ppat.1000062 CrossRefGoogle Scholar
  48. 48.
    Umemiya-Shirafuji R, Hatta T, Okubo K, Sato M, Maeda H, Kume A, Yokoyama N, Igarashi I, Tsuji N, Fujisaki K, Inoue N, Suzuki H (2017) Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol 62:836–841.  https://doi.org/10.1515/ap-2017-0100 CrossRefGoogle Scholar
  49. 49.
    Villar M, Ayllon N, Busby AT, Galindo RC, Blouin EF, Kocan KM, Bonzon-Kulichenko E, Zivkovic Z, Almazan C, Torina A, Vazquez J, de la Fuente J (2010) Expression of heat shock and other stress response proteins in ticks and cultured tickcells in response to Anaplasma spp. infection and heat shock. Int J Proteom 2010:657261.  https://doi.org/10.1155/2010/657261 CrossRefGoogle Scholar
  50. 50.
    Wang F, Wang D, Jiang CZ, Liang N, Hua YH, Liu JZ (2017) Morphology and ultrastructure changes of Haemaphysalis longicornis Neumann (Acari: Ixodidae) female adult ticks at different developmental stages. Int J Acarol 43:308–313.  https://doi.org/10.1080/01647954.2017.1298668 CrossRefGoogle Scholar
  51. 51.
    Wang YH, Mao LH, Peng Y, Sun YW, Wang ZJ, Zhang JY, Zhang JB, Tian J (2016) Francisella tularensis was detected in Haemaphysalis longicornis from Liaoning province. Chin J Vector Biol Control 27:529–532Google Scholar
  52. 52.
    Wei F, Song M, Liu H, Wang B, Wang S, Wang Z, Ma H, Li Z, Zeng Z, Qian J, Liu Q (2016) Molecular detection and characterization of zoonotic and veterinary pathogens in ticks from Northeastern China. Front Microbiol 7:1913.  https://doi.org/10.3389/fmicb.2016.01913 Google Scholar
  53. 53.
    Winnebeck EC, Millar CD, Warman GR (2010) Why does insect RNA look degraded? J Insect Sci 10:159CrossRefGoogle Scholar
  54. 54.
    Wibke JC, Dominique R, Oliver EH, Regina S, Anna LR, Claude PM (2015) Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genom 16:871–885.  https://doi.org/10.1186/s12864-015-1981-7 CrossRefGoogle Scholar
  55. 55.
    Wu HX, Li ZF, Liu QY, Zhang WD, Li DM, Ma HL, Lu L, Liu JL (2015) First detection of Bartonella henselae infection in Haemaphysalis longicornis. Chin J Vector Biol Control 26:16–18Google Scholar
  56. 56.
    Xu XL, Cheng TY, Yang H, Yan F, Yang Y (2015) De novo sequencing, assembly and analysis of salivary gland transcriptome of Haemaphysalis flava and identification of sialoprotein genes. Infect Genet Evol 32:135–142.  https://doi.org/10.1016/j.meegid.2015.03.010 CrossRefGoogle Scholar
  57. 57.
    Xu YJ, Liu L, Yang Y, Wang X, Tian CB, Li YY, Chen HQ, Liu H (2018) Identification of four heat shock protein genes and their expression in response to thermal stress in two strains of Neoseiulus barkeri (Acari: Phytoseiidae). Syst Appl Acarol 23:665–679.  https://doi.org/10.11158/saa.23.4.8 Google Scholar
  58. 58.
    Yamaji K, Miyoshi T, Hatta T, Matsubayashi M, Alim MA, Kushibiki S, Fujisaki K, Tsuji N (2013) HlCPL-A, a cathepsin L-like cysteine protease from the ixodid tick Haemaphysalis longicornis, modulated midgut proteolytic enzymes and their inhibitors during blood meal digestion. Infect Genet Evol 16:206–211.  https://doi.org/10.1016/j.meegid.2013.01.018 CrossRefGoogle Scholar
  59. 59.
    Yu XM, Gong HY, Zhou YZ, Zhang HS, Cao J, Zhou JL (2015) Differential sialotranscriptomes of unfed and fed Rhipicephalus haemaphysaloides, with particularregard to differentially expressed genes of cysteine proteases. Parasites Vectors 8:597.  https://doi.org/10.1186/s13071-015-1213-7 CrossRefGoogle Scholar
  60. 60.
    Yu ZJ, Wang H, Wang TH, Sun WY, Yang XL, Liu JZ (2015) Tick-borne pathogens and the vector potential of ticks in China. Parasites Vectors 8:24.  https://doi.org/10.1186/s13071-014-0628-x CrossRefGoogle Scholar
  61. 61.
    Yu ZJ, Jia QY, Wang TH, Dong N, Yang XL, Wang H, Hu YH, Wang D, Liu JZ (2017) Gene expression profiling of the unfed nymphal Dermacentor silvarum (Acari: Ixodidae) in response to low temperature. Syst Appl Acarol 22:2178–2189.  https://doi.org/10.11158/saa.22.12.10 Google Scholar
  62. 62.
    Zhang LJ, Wang GQ, Liu QH, Chen CF, Li J, Long B, Yu H, Zhang ZL, He J, Qu ZY, Yu JG, Liu YN, Dong T, Yao N, Wang Y, Cheng XQ, Xu JG (2013) Molecular analysis of Anaplasma phagocytophilum isolated from patients with febrile diseases of unknown etiology in China. PLoS One 8:e57155.  https://doi.org/10.1371/journal.pone.0057155 CrossRefGoogle Scholar
  63. 63.
    Zou YX, Wang QY, Fu ZX, Liu PP, Jin HT, Yang HH, Gao HW, Xi Z, Liu Q, Chen LF (2011) Detection of spotted fever group Rickettsia in Haemaphysalis longicornis from Hebei province, China. J Parasitol 97:960–962.  https://doi.org/10.1645/GE-2751.1 CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Authors and Affiliations

  • DongLing Niu
    • 1
  • YaE Zhao
    • 1
    Email author
  • YaNan Yang
    • 1
  • Rui Yang
    • 1
  • XiaoJuan Gong
    • 1
  • Li Hu
    • 1
  1. 1.Department of Pathogen Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong UniversityXi’anChina

Personalised recommendations