Skip to main content
Log in

Epicatechin-copper 9II) complexes: Damage of small intestinal epithelium

  • Published:
Central European Journal of Chemistry

Abstract

Four epicatechins [(−)-epicatechin (EC), (−)-epicatechin gallate (ECg), (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCg)] and their corresponding copper complexes were compared with regard to their effect on the viability of Caco-2 colon cancer cells in vitro, measured by 3-(4,5-dimethylthyazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. The viability of Caco-2 cells exposed to EC (1 mM), ECg (1 mM) or EGC (1mM) respectively, for 30 min, was comparable to that of the saline control group, while EGCg (1 mM) apparently enhanced cellular activity. in contrast, the cells treated with epicatechin-copper complexes were killed. Bivalent copper 91 mM), in similar conditions, did not affect the cells. No cell leakage or other histological differences were observed, implying a rapid cell death. The suggested mechanism of killing is by OH radical attack, produced in the presence of epicatechin-copper complexes, but not in the presence of either of the epicatechins or copper alone. The reaction sites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Peterson and J. Dwyer: “Flavonoids: dietary occurrence and biochemical activity”, Nutr. Res., Vol. 18, (1998), pp. 1995–2018.

    Article  CAS  Google Scholar 

  2. C.A. Rice-Evans, N.J. Miller, G. Paganga: “Antioxidant properties of phenolic compounds”, Trends in Plant Science, Vol. 2, (1997), pp. 152–159.

    Article  Google Scholar 

  3. J.B. Harborne and C.A. Williams: “Advances in flavonoid research since 1992”, Phytochemistry, Vol. 55, (2000), pp. 481–504.

    Article  CAS  Google Scholar 

  4. G. Qiong, Z. Baolu, L. Meifen, S. Shengrong, X. Wenjuan: “Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes”, Biochim. Biophys. Acta, Vol. 1304, (1996), pp. 210–222.

    Google Scholar 

  5. S.A. Aherne and N.M. O'Brien: “Mechanism of protection by the flavonoid, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells”, Free Radic. Biol. Med., Vol. 29, (2000), pp. 507–514.

    Article  CAS  Google Scholar 

  6. P. Leanderson, A.O. Faresjö, C. Tagesson: “Green Tea Polyphenols Inhibit Oxidant-Induced DNA Strand Breakage in Cultured Lung Cells”, Free Radic. Biol. Med., Vol. 23, (1997), pp. 235–242.

    Article  CAS  Google Scholar 

  7. K. Osada, M. Takahashi, S. Hoshina, M. Nakamura, S. Nakamura, M. Sugano: “Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro”, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., Vol. 128, (2001), pp. 153–164.

    Article  CAS  Google Scholar 

  8. C.J. Dufresne and E.R. Farnworth: “A review of latest research findings on the health promotion properties of tea”, J. Nutr. Biochem., Vol. 12, (2001), pp. 404–421.

    Article  CAS  Google Scholar 

  9. R. Amarowicz and F. Shahidi: “A rapid chromatographic method for separation of individual catechins from green tea”, Food Res. Int., Vol. 29, (1996), pp. 71–76.

    Article  CAS  Google Scholar 

  10. C. Kies: “Food sources of dietary copper”, Adv. Exp. Med. Biol., Vol. 258, (1989), pp. 1–20.

    CAS  Google Scholar 

  11. A. Czlonkowska, J. Gajda, M. Rodo: “Effects of long-term treatment in Wilson's disease with D-penicillamine and zinc sulfate”, J. Neurol., Vol. 243, (1996), pp. 269–73.

    Article  CAS  Google Scholar 

  12. K. Ishige, D. Schubert, Y. Sagara: “Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms”, Free Radic. Biol. Med., Vol. 30, (2001), pp. 433–446.

    Article  CAS  Google Scholar 

  13. J.F.B. Mercer: “The molecular basis of copper-transport diseases”, Trends Mol. Med., Vol. 7, (2001), pp. 64–69.

    Article  CAS  Google Scholar 

  14. S. Kameoka, P. Leavitt, C. Chang, S.-M. Kuo: “Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids”, Cancer Lett., Vol. 146, (1999), pp. 161–167.

    Article  CAS  Google Scholar 

  15. S.-M. Kuo, C.T. Huang, P. Blum, C. Chang: “Quercetin cumulatively enhances copper induction of metallothionein in intestinal cells”, Biol. Trace Elem. Res., Vol. 84, (2001), pp. 1–10.

    Article  CAS  Google Scholar 

  16. A.N. Kong, E. Owuor, R. Yu, V. Hebbar, C. Chen, R. Hu, S. Mandlekar: “Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE)”, Drug Metab. Rev., Vol. 33, (2001), pp. 255–71.

    Article  CAS  Google Scholar 

  17. R. Yu, J.J. Jiao, J.L. Duh, K. Gudehithlu, T.H. Tan, A.N. Kong: “Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression”, Carcinogenessis, Vol. 18, (1997), pp. 451–456.

    Article  CAS  Google Scholar 

  18. B. Annabi, M.-P. Lachambre, N. Bousquet-Gagnon, M. Pagé, D. Gingras, R. Béliveau: “Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells”, Biochim. Biophys. Acta, Vol. 1542, (2002), pp. 209–220.

    Article  CAS  Google Scholar 

  19. N.J. Miller, C. Castelluccio, L. Tijburg, C. Rice-Evans: “The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators?”, FEBS Lett., Vol. 392, (1996), pp. 40–44.

    Article  CAS  Google Scholar 

  20. R. Walker: “Modulation of toxicity by dietary and environmental factors”, Environ. Toxicol. Pharmacol., Vol. 2, (1996), pp. 181–188.

    Article  CAS  Google Scholar 

  21. S.-M. Kuo, P.S. Leavitt, C.P. Lin: “Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells”, Biol. Trace Elem. Res., Vol. 62, (1998), pp. 135–53.

    CAS  Google Scholar 

  22. N. Yamanaka, O. Oda, S. Nagao: “Green tea catechins such as (−)-epicatechin and (−)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase”, FEBS Lett., Vol. 401, (1997), pp. 230–234.

    Article  CAS  Google Scholar 

  23. T. Kimura, N. Hoshino, A. Yamaji, F. Hayakawa, T. Ando: “Bactericidal activity of catechin-copper (II) complexes on Esterichia coli ATCC11775 in the absence of hydrogen peroxide”, Lett. Appl. Microbiol., Vol. 27, (1998), pp. 328–330.

    Article  CAS  Google Scholar 

  24. M. Mochizuki, S. Yamazaki, K. Kano, T. Ikeda: “Kinetic analysis and mechanistic aspects of autoxidation of catechins”, Biochim. Biophys. Acta, Vol. 1569, (2002), pp. 35–44.

    CAS  Google Scholar 

  25. P.C.H. Hollman and M.B. Katan: “Dietary Flavonoids: Intake, Health Effects and Bioavailability”, Food Chem. Toxicol., Vol. 37, (1999), pp. 937–942.

    Article  CAS  Google Scholar 

  26. P. Arthursson: “Epithelial transport of drugs in cell culture. I. A. model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells”, J. Pharm. Sci., Vol. 79 (1980), pp. 476–482.

    Article  Google Scholar 

  27. T. Mosmann: “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Citotoxicity Assays”, Immunol. Methods, Vol. 65, (1983), pp. 55–63.

    Article  CAS  Google Scholar 

  28. M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Czerwinsky, D.L. Fine, B.J. Abott, J.G. Mayo, R.H. Shoemaker, M.R. Boyd: “Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay”, Cancer Res., Vol. 48, (1998), pp. 589–601.

    Google Scholar 

  29. Y. Zhao, J. Cao, H. Ma, J. Liu: “Apoptosis induced by tea polyphenols in HL-60 cells”, Cancer Lett., Vol. 121, (1997), pp. 163–167.

    Article  CAS  Google Scholar 

  30. H. Wang, G.J. Provan, K. Helliwell: “Tea flavonoids: their functions, utilization and analysis”, Trends Food Sci. Tech., Vol. 11, (2000), pp. 152–160.

    Article  CAS  Google Scholar 

  31. I.R. Record and J.M. Lane: “Simulated intestinal digestion of green and black teas”, Food Chem., Vol. 73, (2001), pp. 481–486.

    Article  CAS  Google Scholar 

  32. Y. Shimada, H. Goto, T. Kogure, N. Shibahara, I. Sakakibara, H. Sasaki, K. Terasawa: “Protective Effect of Phenolic Compounds Isolated from the Hooks and Stems of Uncaria sinensis on the Glutamate-Induced Neuronal Death”, Am. J. Chin. Med., Vol. 29, (2001), pp. 173–180.

    Article  CAS  Google Scholar 

  33. F.P. Altman: “Studies on the Reduction of Tetrazolium Salts. III. The products of Chemical and Enzymic Reduction”, Histochemistry, Vol. 38, (1974), pp. 155–171.

    Article  CAS  Google Scholar 

  34. X. Tan, D. Hu, S. Li, Y. Han, Y. Zhang, D. Zhou: “Differences of four catechins in cell cycle arrest and induction of apoptosis in LoVo cells”, Cancer Lett., Vol. 158, (2000), pp. 1–6.

    Article  CAS  Google Scholar 

  35. J. Grooten, V. Goossens, B. Vanhaesebroeck, W. Fiers: “Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumor necrosis factor-induced Citotoxicity”, Cytokine, Vol. 5, (1993), pp. 546–555.

    Article  CAS  Google Scholar 

  36. A.G.E. Pearse: Histochemistry: Theoretical and Applied, Churchill Livingstone, London Press, Edinburgh, 1972, pp. 881–920.

    Google Scholar 

  37. Y. Lin, D.A. Peterson, H. Kimura, D. Schubert: “Mechanism of cellular 3(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction”, J. Neurochem., Vol. 69, (1997), pp. 581–593.

    Google Scholar 

  38. Y. Liu: “Understanding the biological activity of amyloid proteins in vitro: from inhibited cellular MTT reduction to altered cellular cholesterol homeostasis”, Prog. Neuropsychopharmacol. Biol. Psychiatry, Vol. 23, (1999), pp. 377–395.

    Article  CAS  Google Scholar 

  39. Z.Y. Chen and P.T. Chan: “Antioxidative activity of green tea catechins in canola oil”, Chem. Phys. Lipids., Vol. 82, (1996), pp. 163–172.

    Article  CAS  Google Scholar 

  40. C.A. Rice-Evans, N.J. Miller, G. Paganga: “Structure-antioxidant activity relationships of flavonoids and phenolic acids”, Free Rad. Biol. Med., Vol. 20, (1996), pp. 933–956.

    Article  CAS  Google Scholar 

  41. G. Cao, E. Sofic, R.L. Prior: “Antioxidant and prooxidant Behavior of Flavonoids: Structure-Activity Relationships”, Free Rad. Biol. Med., Vol. 22, (1997), pp. 749–760.

    Article  CAS  Google Scholar 

  42. D.D. Schramm, H.E. Collins, J.B. German: “Flavonoid transport by mammalian endothelial cells”, J. Nutr. Biochem., Vol. 10, (1999), pp. 193–197.

    Article  CAS  Google Scholar 

  43. G. Williamson, A.J. Day, G.W. Plumb, D. Couteau: “Human metabolic pathways of dietary flavonoids and cinnamates”, Biochem. Soc. Trans., Vol. 28, (2000), pp. 16–21.

    CAS  Google Scholar 

  44. J.B. Vaidyanathan and T. Walle: “Glucuronidation and sulfation of the tea flavonoid (−)-epicatechin by the human and rat enzymes”, Drug Metab. Dispos., Vol. 30, (2002), pp. 897–903.

    Article  CAS  Google Scholar 

  45. J.B. Vaidyanathan and T. Walle: “Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2”, Pharm. Res., Vol. 18, (2001), pp. 1420–1425.

    Article  CAS  Google Scholar 

  46. J.B. Vaidyanathan and T. Walle: “Apical transporter MRP2, a barrier for the intestinal absorption of the anticancer tea flavonoid epicatechin”, Biochim. Biophys. Acta, Vol. 1542, (2002), pp. 149–159.

    Article  Google Scholar 

  47. F. Hayakawa, T. Kimura, H. Sohmiya, M. Fujita, N. Hoshino, T. Ando: “The correlation of structure and activity of phenolic compounds to DNA cleavage in the presence of cupric ion (in Japanese)”, Nippon Nogeikagaku Kaishi, Vol. 72, (1998), pp. 759–761.

    CAS  Google Scholar 

  48. J.E. Brown, H. Khodr, R.C. Hider, C.A. Rice-Evans: “Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties”, Biochem. J., Vol. 330, (1998), pp. 1173–1178.

    CAS  Google Scholar 

  49. F.L. Tobiason, R.W. Hemingway, G. Vergoten: Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, Modeling the conformation of polyphenols and their complexation with polypeptides; self-association of catechin and its complexation with l-proline glycine oligomers, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 527–544.

    Google Scholar 

  50. F.L. Tobiason, R.W. Hemingway, G. Vergoten: Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, Interaction of flavonoids with peptides and proteins and conformations of dimeric flavonoids in solution, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 509–526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Stavrescu, R.B., Kimura, T., Hayakawa, F. et al. Epicatechin-copper 9II) complexes: Damage of small intestinal epithelium. cent.eur.j.chem. 1, 35–52 (2003). https://doi.org/10.2478/BF02479256

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02479256

Keywords

Navigation