Skip to main content
Log in

Potential Beneficial Effects of Low Molecular Weight Heparin on Cognitive Impairment in Elderly Patients on Haemodialysis

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Vascular cognitive impairment or mixed vascular cognitive impairment and Alzheimer’s disease (AD) appear to be much more common in elderly patients than AD alone. Furthermore, vascular dementia (VaD) and AD are more prevalent in elderly patients receiving haemodialysis (HD), leading to a loss of independence and a poor quality of life. Hypotensive episodes in patients receiving HD contribute to vascular changes in the brain, with consequent progression of VaD and AD.

The use of the lowest individually optimized bolus dose of low molecular weight heparin (LMWH) during HD, with fewer hypotensive episodes during and between HD procedures, may exert a sparing effect on changes in microvascular circulation and decrease the incidence of VaD and AD. We believe that long-term use of LMWH, with its direct effect on amyloid β protein (Aβ) in the blood and on Aβ accumulation in the brain and indirect effects on prevention of complement activation, may delay the progression of cognitive impairment in patients receiving HD.

There is a need for a robustly designed, prospective trial to evaluate the effects of long-term treatment with LMWH on mild cognitive impairment, VaD and AD in elderly patients receiving maintenance HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madero M, Gul A, Sarnak MJ. Cognitive function in chronic kidney disease. Semin Dial 2008; 21: 29–37

    Article  PubMed  Google Scholar 

  2. Wright S. Chapter 20. Hemodialysis in elderly patients. In: Geriatric nephrology curriculum. Washington, DC: American Society of Nephrology, 2009 [online]. Available from URL: http://www.asn-online.org/education_and_meetings/geriatrics/OnlineGeriatricsCurriculum.pdf [Accessed 2011 Sep 11]

    Google Scholar 

  3. Murray AM. Cognitive impairment in the aging dialysis and chronic kidney disease population: an occult burden. Adv Chronic Kidney Dis 2008; 15(2): 123–32

    Article  PubMed Central  PubMed  Google Scholar 

  4. Agganis BT, Weiner DE, Giang LM, et al. Depression and cognitive function in maintenance hemodialysis patients. Am J Kidney Dis 2010; 56(4): 704–12

    Article  PubMed Central  PubMed  Google Scholar 

  5. Onyike CU. Cerebrovascular disease and dementia. Int Rev Psychiatry 2006; 18(5): 423–31

    Article  PubMed  Google Scholar 

  6. Pereira A, Weiner DE, Scott T, et al. Subcortical cognitive impairment in dialysis patients. Hemodial Int 2007; 11: 309–14

    Article  PubMed  Google Scholar 

  7. Selnes OA, Vinters HV. Vascular cognitive impairment. Nat Clin Pract Neurol 2006; 2(10): 538–47

    Article  PubMed  Google Scholar 

  8. Saele K, Søonnesyn H, Aarsland D, et al. Cognitive failure in terminal kidney disease. Tidsskr Nor Laegeforen 2009; 129(4): 296–9

    Article  PubMed  Google Scholar 

  9. Griva K, Stygall J, Hankins M, et al. Cognitive impairment in 7-years mortality in dialysis patients. Am J Kidney Dis 2010; 56(4): 693–703

    Article  PubMed  Google Scholar 

  10. Knopman DS, Boeve BF, Peterson RC. Essentials of the proper diagnoses in mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc 2003; 78: 1290–308

    Article  PubMed  Google Scholar 

  11. Modrego PJ. Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr Alzheimer Res 2006; 3(2): 161–70

    Article  CAS  PubMed  Google Scholar 

  12. Kurella Tamura M, Yaffe K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. Kidney Int 2011; 79: 14–22

    Article  PubMed  Google Scholar 

  13. Duron E, Hanon O. Hypertension, cognitive decline and dementia. Arch Cardiovasc Dis 2008; 101: 181–9

    Article  CAS  PubMed  Google Scholar 

  14. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer’s disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatric Society. JAMA 1997; 278: 1363–71

    Article  CAS  PubMed  Google Scholar 

  15. Fukunishi I, Kitaoka T, Shirai T, et al. Psychiatric disorders among patients undergoing hemodialysis therapy. Nephron 2002;91: 344–7

    Article  PubMed  Google Scholar 

  16. O’Brien JT. Vascular cognitive impairment. Am J Geriatr Psychiatry 2006; 14(9): 724–33

    Article  PubMed  Google Scholar 

  17. Purandare N, Oude Voshaar RC, Burns A, et al. Paradoxical embolization: a potential cause of cerebral damage in Alzheimer’s disease? Neurol Res 2006; 28(6): 679–84

    Article  CAS  PubMed  Google Scholar 

  18. Roman GC. Facts, myths, and controversies in vascular dementia. J Neurol Sci 2004; 226: 49–52

    Article  PubMed  Google Scholar 

  19. Posner HB, Tang MX, Luchsinger J, et al. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology 2002; 58: 1175–81

    Article  CAS  PubMed  Google Scholar 

  20. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer’s disease and decline in cognitive function. Arch Neurol 2004; 61: 661–6

    Article  PubMed  Google Scholar 

  21. Murray AM, Pederson SL, Tupper DE, et al. Acute variation in cognitive function in hemodialysis patients: a cohort study with repeated measures. Am J Kidney Dis 2007; 50: 270–8

    Article  PubMed  Google Scholar 

  22. Kovacic V, Ljutic D, Dodig J, et al. Influence of haemodialysis on early markers of atherosclerosis. Nephrology 2008; 13: 472–9

    Article  CAS  PubMed  Google Scholar 

  23. Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and mis-folded protein. Lancet 2004; 363: 1139–46

    Article  CAS  PubMed  Google Scholar 

  24. Lindqvist R, Carlsson M, Sjoden PO. Coping strategies and health-related quality of life among spouses of continuous ambulatory peritoneal dialysis, haemodialysis, and transplant patients. J Adv Nurs 2000; 31: 1398–408

    Article  CAS  PubMed  Google Scholar 

  25. Radic J, Ljutic D, Radic M, et al. The possible impact of dialysis modality on cognitive function in chronic dialysis patients. Neth J Med 2010; 68(4): 11–5

    Google Scholar 

  26. Kimmel PL, Levy NB. Psychology and rehabilitation. In: Daugirdas JT, Blake PG, Ing TS, editors. Handbook of dialysis. 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2001: 413–9

    Google Scholar 

  27. Kurella Tamura M, Larive B, Unruh M, et al. Prevalence and correlates of cognitive impairment in the frequent hemodialysis network (FHN) trials. Clin J Am Nephrol 2010; 8: 1429–38

    Article  Google Scholar 

  28. Stefanidis I, Bach R, Mertens PR, et al. Influence of hemodialysis on the mean blood flow velocity in the middle cerebral artery. Clin Nephrol 2005; 64: 129–37

    Article  CAS  PubMed  Google Scholar 

  29. Prohovnik I, Post J, Uribarri J, et al. Cerebrovascular effects of hemodialysis in chronic kidney disease. J Cereb Blood Flow Metab 2007; 27: 1861–9

    Article  CAS  PubMed  Google Scholar 

  30. Mizumasa T, Hirakata H, Yoshimitsu T, et al. Dialysis-related hypotension as a cause of progressive frontal lobe atrophy in chronic hemodialysis patients: a 3-year prospective study. Nephron Clin Pract 2004; 97: c23–30

    Article  PubMed  Google Scholar 

  31. Longstreth Jr W, Larsen EK, Klein R, et al. Associations between findings on cranial magnetic resonance imaging and retinal photography in the elderly: the Cardiovascular Health Study. Am J Epidemiol 2007; 165: 78–84

    Article  PubMed  Google Scholar 

  32. Haile M, Galoyan S, Li Y-S, et al. Nimodipine-induced hypotension but not nitroglycerin-induced hypotension preserves long-term memory [abstract]. J Neurosurg Anesthesiol 2010; 22(4): 433

    Google Scholar 

  33. de la Torre JC. How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res 2006; 28(6): 637–44

    Article  PubMed  Google Scholar 

  34. Moretti R, Torre P, Antonello RM, et al. Risk factors for vascular dementia: hypotension as a key point. Vasc Health Risk Manag 2008; 4(2): 395–402

    PubMed Central  PubMed  Google Scholar 

  35. Protogeroy AD, Safar ME, Iaria P, et al. Diastolic blood pressure and mortality in the elderly with cardiovascular disease. Hypertension 2007; 50: 172–87

    Article  Google Scholar 

  36. Zager PG, Nikolic J, Brown RH, et al. “U” curve association of blood pressure and mortality in hemodialysed patients. Medical Directors of Dialysis Clinics Inc. Kidney Int 1998; 54: 561–9

    Article  CAS  PubMed  Google Scholar 

  37. Port FK, Hulbert-Shearon TE, Wolfe RA, et al. Pre-dialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am J Kidney Dis 1999; 33: 507–17

    Article  CAS  PubMed  Google Scholar 

  38. Sadowski M, Pankiewicz J, Scholtzova H, et al. Links between the pathology of Alzheimer’s disease and vascular dementia. Neurochem Res 2004; 29(6): 1257–66

    Article  CAS  PubMed  Google Scholar 

  39. Pankiewicz J, Scholtzova H, Sadowski M, et al. Global ischemia exacerbates Alzheimer’s disease related pathology in transgenic mice [abstract no. 534. 7-S583]. Society for Neuroscience Abstract Viewer and Itinerary Planner 2003; 7Suppl. 5

    Google Scholar 

  40. Alves TC, Busatto GF. Regional cerebral blood flow reductions, heart failure and Alzheimer’s disease. Neurol Res 2006; 28(6): 579–87

    Article  PubMed  Google Scholar 

  41. Birkenhager WH, Staessen JA. Progress in cardiovascular diseases: cognitive function in essential hypertension. Prog Cardiovasc Dis 2006; 49(1): 1–10

    Article  PubMed  Google Scholar 

  42. Davenport A. Intradialytic complications during hemodialysis. Hemodial Int 2006; 10: 162–7

    Article  PubMed  Google Scholar 

  43. Hata R, Matsumoto M, Handa N, et al. Effects of hemodialysis on cerebral circulation evaluated by transcranial Doppler ultrasonography. Stroke 1994; 25: 408–12

    Article  CAS  PubMed  Google Scholar 

  44. Stafie ME, Checheritä IA, Niculae A, et al. Intradialytic hypotension: mechanisms and therapeutic implications. Ther Pharmacol Clin Toxicol 2010; 14(1): 57–62

    Google Scholar 

  45. Radic J, Ljutic D, Kovacic V, et al. Blood pressure variability during haemodialysis session impaired cognitive and motor functions in uremic patients [abstract]. J Hyper-tens 2010; 28: pe149

  46. Gelb S, Shapiro RJ, Hill A, et al. Cognitive outcome following kidney transplantation. Nephrol Dial Transplant 2008; 23: 1032–8

    Article  PubMed  Google Scholar 

  47. Tangphao O, Chalon S, Heitor J, et al. Heparin-induced vasodilation in human hand veins. Clin Pharmacol Ther 1999; 66: 232–8

    Article  CAS  PubMed  Google Scholar 

  48. Sain M, Ljutic D, Radic J, et al. Decreasing of nadroparin doses have influence on blood pressure in haemodialysed patients [abstract]. J Hypertens 2009; 27(4): S40–1

    Google Scholar 

  49. Arici M, Altun B, Dinler O, et al. Haemodialysis hypotension and nitric oxide production: comparison of heparin with parnaparin. Blood Purif 2002; 20: 145–9

    Article  CAS  PubMed  Google Scholar 

  50. Bergamaschini L, Donarini C, Gobbo G, et al. Activation of complement and contact system in Alzheimer’s disease. Mech Ageing Dev 2001; 122: 1971–83

    Article  CAS  PubMed  Google Scholar 

  51. Arnaud L, Robakis NK, Figueiredo-Pereira ME. It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener Dis 2006; 3(6): 313–9

    Article  PubMed  Google Scholar 

  52. Farkas I, Takahashi M, Fukuda A, et al. Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer’s disease. J Immunol 2003; 170: 5764–71

    Article  CAS  PubMed  Google Scholar 

  53. Bergamaschini L, Rossi E, Storini C, et al. Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and β-amyloid accumulation in mouse model of Alzheimer’s disease. J Neurosci 2004; 24(17): 4181–6

    Article  CAS  PubMed  Google Scholar 

  54. Matsuoka Y, Saito M, La Francois J, et al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with the affinity to β-amyloid. J Neurosci 2003; 23: 29–33

    CAS  PubMed  Google Scholar 

  55. Bergamaschini L, Donarini C, Rossi E, et al. Heparin attenuate cytotoxic and inflammatory activity of Alzheimer amyloid beta in vitro. Neurobiol Aging 2002; 23: 531–6

    Article  CAS  PubMed  Google Scholar 

  56. Elsayed E, Becker RC. The impact of heparin compounds on cellular inflammatory responses: a construct for future investigation and pharmaceutical development. J Thromb Thrombolysis 2003; 15(1): 11–8

    Article  CAS  PubMed  Google Scholar 

  57. Zhu H, Yu J, Kindy MS. Inhibition of amyloidosis using low molecular weight heparins. Mol Med 2001; 7: 517–22

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kourtzelis I, Markiewski MM, Doumas M, et al. Complement anaphylatoxin C5a contributes to hemodialysisassociated thrombosis. Blood 2010; 116(4): 631–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

No external funding was used in the preparation of this review. The authors have declared no conflicts of interest that might be relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milenka Sain MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sain, M., Kovacic, V., Radic, J. et al. Potential Beneficial Effects of Low Molecular Weight Heparin on Cognitive Impairment in Elderly Patients on Haemodialysis. Drugs Aging 29, 1–7 (2012). https://doi.org/10.2165/11592870-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11592870-000000000-00000

Keywords

Navigation