Skip to main content

Clinical Pharmacokinetics of Metformin

Abstract

Metformin is widely used for the treatment of type 2 diabetes mellitus. It is a biguanide developed from galegine, a guanidine derivative found in Galega officinalis (French lilac). Chemically, it is a hydrophilic base which exists at physiological pH as the cationic species (>99.9%). Consequently, its passive diffusion through cell membranes should be very limited. The mean ± SD fractional oral bioavailability (F) of metformin is 55 ± 16%. It is absorbed predominately from the small intestine.

Metformin is excreted unchanged in urine. The elimination half-life (t1/2) of metformin during multiple dosages in patients with good renal function is approximately 5 hours. From published data on the pharmacokinetics of metformin, the population mean of its clearances were calculated. The population mean renal clearance (CLR) and apparent total clearance after oral administration (CL/F) of metformin were estimated to be 510 ± 130 mL/min and 1140 ± 330 mL/min, respectively, in healthy subjects and diabetic patients with good renal function. Over a range of renal function, the population mean values of CLR and CL/F of metformin are 4.3 ± 1.5 and 10.7 ± 3.5 times as great, respectively, as the clearance of creatinine (CLCR). AS the CLR and CL/F decrease approximately in proportion to CLCR, the dosage of metformin should be reduced in patients with renal impairment in proportion to the reduced CLCR.

The oral absorption, hepatic uptake and renal excretion of metformin are mediated very largely by organic cation transporters (OCTs). An intron variant of OCT1 (single nucleotide polymorphism [SNP] rs622342) has been associated with a decreased effect on blood glucose in heterozygotes and a lack of effect of metformin on plasma glucose in homozygotes. An intron variant of multidrug and toxin extrusion transporter [MATE1] (G>A, SNP rs2289669) has also been associated with a small increase in antihyperglycaemic effect of metformin. Overall, the effect of structural variants of OCTs and other cation transporters on the pharmacokinetics of metformin appears small and the subsequent effects on clinical response are also limited. However, intersubject differences in the levels of expression of OCT1 and OCT3 in the liver are very large and may contribute more to the variations in the hepatic uptake and clinical effect of metformin.

Lactic acidosis is the feared adverse effect of the biguanide drugs but its incidence is very low in patients treated with metformin. We suggest that the mean plasma concentrations of metformin over a dosage interval be maintained below 2.5 mg/L in order to minimize the development of this adverse effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Table II
Fig. 5
Table III
Table IV
Fig. 6
Table V

References

  1. 1.

    Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006; 29: 1963–72

    PubMed  Article  Google Scholar 

  2. 2.

    Clinical Task Force of International Diabetes Federation. Global guideline for type 2 diabetes: recommendations for standard, comprehensive, and minimal care. Diab Med 2006; 23(6): 579–93

    Article  Google Scholar 

  3. 3.

    Sheiner LB, Benet LZ, Pagliaro LA. A standard approach to compiling clinical pharmacokinetic data. J Pharmacokinet Biopharm 1981; 9: 59–127

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Day RO, Graham GG, Hicks M, et al. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin Pharmacokinet 2007; 46: 623–44

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Craig PN. Drug compendium. In: Hansch C, Sammes PG, Taylor JB, editors. Comprehensive medicinal chemistry. Oxford: Pergamon Press, 1990: 237–965

    Google Scholar 

  6. 6.

    Clarke GS, Bretnall AE. Metformin hydrochloride. In: Brittain HG, editor. Analytical profiles of drug substances and excipients. San Diego (CA): Academic Press, 1998: 243–84

    Google Scholar 

  7. 7.

    Tucker GT, Casey C, Phillips PJ, et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 1981; 12: 235–46

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Sirtori CR, Franceschini G, Galli-Kienle M, et al. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther 1978; 24: 683–93

    PubMed  CAS  Google Scholar 

  9. 9.

    Pentikäinen PJ, Neuvonen PJ, Penttilä A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol 1979; 16: 195–202

    PubMed  Article  Google Scholar 

  10. 10.

    Robert F, Fendri S, Hary L, et al. Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects. Diabetes Metab 2003; 29: 279–83

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Kennedy M, Chinwah P, Wade DN. A pharmacological method of measuring mouth caecal transit time in man. Br J Clin Pharmacol 1979; 8: 372–3

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Marathe PH, Wen Y, Norton J, et al. Effect of altered gastric emptying and gastrointestinal motility on metformin absorption. Br J Clin Pharmacol 2000; 50: 325–32

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Sambol NC, Brookes LG, Chiang J, et al. Food intake and dosage level, but not tablet vs solution dosage form, affect the absorption of metformin HCl in man. Br J Clin Pharmacol 1996; 42: 510–2

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Marathe PH, Arnold ME, Meeker J, et al. Pharmacokinetics and bioavailability of a metformin/glyburide tablet administered alone and with food. J Clin Pharmacol 2000; 40: 1494–502

    PubMed  CAS  Google Scholar 

  15. 15.

    Karim A, Slater M, Bradford D, et al. Oral antidiabetic drugs: effect of food on absorption of pioglitazone and metformin from a fixed-dose combination tablet. J Clin Pharmacol 2007; 47: 48–55

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    He YL, Flannery B, Campestrini J, et al. Effect of food on the pharmacokinetics of a vildagliptin/metformin (50/100 mg) fixed-dose combination tablet in healthy volunteers. Curr Med Res Opin 2008; 24: 1703–9

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Timmins P, Donahue S, Meeker J, et al. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet 2005; 44: 721–9

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Rao N, Chou T, Ventura D, et al. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther 2005; 27: 1596–606

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Sambol NC, Chiang J, O’Conner M, et al. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol 1996; 36: 1012–21

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Herman GA, Bergman A, Yi B, et al. Tolerability and pharmacokinetics of metformin and the dipeptidyl peptidase-4 inhibitor sitagliptin when coadministered in patients with type 2 diabetes. Curr Med Res Opin 2006; 22: 1939–47

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Hong Y, Rohatagi S, Habtemariam B, et al. Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol 2008; 48: 696–707

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Cullen E, Liao J, Lukacsko P, et al. Pharmacokinetics and dose proportionality of extended-release metformin following administration of 1000, 1500, 2000 and 2500 mg in healthy volunteers. Biopharm Drug Dispos 2004; 25: 261–3

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Schwartz S, Fonseca V, Berner B et al. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care 2006; 29: 759–64

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Davidson J, Howlett H. New prolonged-release metformin improves gastrointestinal tolerabilty. Br J Diab Vasc Dis 2004; 4: 273–7

    Article  CAS  Google Scholar 

  25. 25.

    Feher MD, Al-Mrayat M, Brake J, et al. Tolerability of prolonged-release metformin (Glucophage SR) in individuals intolerant to standard metformin: results from four UK centres. Br J Diab Vasc Dis 2007; 7: 225–8

    Article  CAS  Google Scholar 

  26. 26.

    National Institute for Health and Clinical Excellence. NICE guidance: type 2 diabetes- newer agents (partial update of CG66). London: NICE, 2010 Oct 7 [online]. Available from URL: http://www.nice.org.uk/cg87 [Accessed 2010 Dec 13]

  27. 27.

    Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 2007; 35: 1956–62

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet 2008; 23: 243–53

    PubMed  Article  Google Scholar 

  29. 29.

    Hilgendorf C, Ahlin G, Seithel A, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 2007; 35: 1333–40

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Muller J, Lips KS, Metzner L, et al. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 2005; 70: 1851–60

    PubMed  Article  Google Scholar 

  31. 31.

    Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 2008; 83: 273–80

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Chen L, Pawlikowski B, Schlessinger A, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics 2010; 20: 687–99

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117: 1422–31

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zolk O. Current understanding of the pharmacogenomics of metformin. Clin Pharmacol Ther 2009; 86: 595–8

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 2009; 86: 299–306

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Chen Y, Li S, Brown C, et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet Genomics 2009; 19: 497–504

    PubMed  Article  Google Scholar 

  37. 37.

    Song IS, Shin HJ, Shim EJ, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 2008; 84: 559–62

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Bailey CJ, Wilcock C, Scarpello JH. Metformin and the intestine. Diabetologia 2008; 51: 1552–3

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Bailey CJ, Mynett KJ, Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol 1994; 112: 671–5

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos 2008; 36: 1650–8

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Beckmann R. Absorption, distribution in the organism and elimination of metformin. Diabetologia 1969; 5: 318–24

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Wilcock C, Wyre ND, Bailey CJ. Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 1991; 43: 442–4

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Wang DS, Jonker JW, Kato Y, et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 302: 510–5

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Nies AT, Koepsell H, Winter S, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 2009; 50: 1227–40

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Wang DS, Kusuhara H, Kato Y, et al. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003; 63: 844–8

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Sogame Y, Kitamura A, Yabuki M, et al. A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes. Bio-pharm Drug Dispos 2009; 30: 476–84

    Article  CAS  Google Scholar 

  47. 47.

    White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 2007; 110: 4064–72

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Tanihara Y, Masuda S, Sato T, et al. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 2007; 74: 359–71

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Otsuka M, Matsumoto T, Morimoto R, et al. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 2005; 102: 17923–8

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Hawthorne G. Metformin use and diabetic pregnancy-has its time come? Diab Med 2006; 23: 223–7

    Article  CAS  Google Scholar 

  51. 51.

    Nicholson W, Bolen S, Witkop CT, et al. Benefits and risks of oral diabetes agents compared with insulin in women with gestational diabetes: a systematic review. Obstet Gynecol 2009; 113: 193–205

    PubMed  Google Scholar 

  52. 52.

    Rowan JA, Hague WM, Gao W, et al. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med 2008; 358: 2003–15

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Kovo M, Kogman N, Ovadia O, et al. Carrier-mediated transport of metformin across the human placenta determined by using the ex vivo perfusion of the placental cotyledon model. Prenatal Diagnosis 2008; 28: 544–8

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Hughes RC, Gardiner SJ, Begg EJ, et al. Effect of pregnancy on the pharmacokinetics of metformin. Diab Med 2006; 23: 323–6

    Article  CAS  Google Scholar 

  55. 55.

    Charles B, Norris R, Xiao X, et al. Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit 2006; 28: 67–72

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Eyal S, Easterling TR, Carr D, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos 2010; 38: 833–40

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Gardiner SJ, Kirkpatrick CM, Begg EJ, et al. Transfer of metformin into human milk. Clin Pharmacol Ther 2003; 73: 71–7

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Hiasa M, Matsumoto T, Komatsu T, et al. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. Am J Physiol Cell Physiol 2006; 291: C678–86

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Noel M. Kinetic study of normal and sustained release dosage forms of metformin in normal subjects. Res Clin For 1979; 1: 35–45

    CAS  Google Scholar 

  60. 60.

    Sambol NC, Chiang J, Lin ET, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol 1995; 35: 1094–102

    PubMed  CAS  Google Scholar 

  61. 61.

    Somogyi A, Stockley C, Keal J, et al. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 1987; 23: 545–51

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Yin OQ, Tomlinson B, Chow MS. Variability in renal clearance of substrates for renal transporters in Chinese subjects. J Clin Pharmacol 2006; 46: 157–63

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Zhang L, Tian Y, Zhang Z, et al. Simultaneous determination of metformin and rosiglitazone in human plasma by liquid chromatography/tandem mass spectrometry with electrospray ionization: application to a pharmacokinetic study. J Chromatog B 2007; 854: 91–8

    Article  CAS  Google Scholar 

  64. 64.

    Ohta KY, Inoue K, Yasujima T, et al. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci 2009; 12: 388–96

    PubMed  CAS  Google Scholar 

  65. 65.

    Xia L, Zhou M, Kalhorn TF, et al. Podocyte-specific expression of organic cation transporter PMAT: implication in puromycin aminonucleoside nephrotoxicity. Am J Physiol Renal Physiol 2009; 296: F1307–13

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Wang ZJ, Yin OQ, Tomlinson B, et al. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics 2008; 18: 637–45

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Ogasawara K, Terada T, Motohashi H, et al. Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J Hum Genet 2008; 53: 607–14

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 2009; 86(3): 299–306

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Toyama K, Yonezawa A, Tsuda M, et al. Heterozygous variants of multidrug and toxin extrusions (MATE1 and MATE2-K) have little influence on the disposition of metformin in diabetic patients. Pharmacogenet Genomics 2010; 20: 135–8

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Matsushima S, Maeda K, Inoue K, et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine. Drug Metab Dispos 2009; 37: 555–9

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, et al. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol 2010; 298: F997–1005

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Ito S, Kusuhara H, Kuroiwa Y, et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 2010; 333: 341–50

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    He YL, Sabo R, Picard F, et al. Study of the pharmacokinetic interaction interaction of vildaglitpin and metformin in patients with type 2 diabetes. Curr Med Res 2009; 25: 1265–72

    Article  CAS  Google Scholar 

  74. 74.

    Di Cicco RA, Allen A, Carr A, et al. Rosiglitazone does not alter the pharmacokinetics of metformin. J Clin Pharmacol 2000; 40: 1280–5

    PubMed  Google Scholar 

  75. 75.

    Kudolo GB, Wang W, Javors M, et al. The effect of the ingestion of Ginko biloba extract (EGb 761) on the pharmacokinetics of metformin in non-diabetic and type 2 dabetic subjects: a double blind placebo-controlled, crossover study. Clin Nutr 2006; 25: 606–16

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Vaidyanathan S, Maboudian M, Warren V, et al. A study of the pharmacokinetic interactions of the direct renin inhibitor aliskiren with metformin, pioglitazone and fenofibrate in healthy subjects. Curr Med Res Opin 2008; 24: 2313–26

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Jayasagar G, Krishna Kumar M, Chandrasekhar K, et al. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 2002; 19: 41–8

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Zolk O, Solbach TF, Konig J, et al. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmiedebergs Arch Pharmacol 2009; 379: 337–48

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010; (4): CD002967

    PubMed  Google Scholar 

  80. 80.

    Australian Medicines Handbook Pty Ltd. Australian medicines handbook [online]. Available from URL: http://www.amh.net.au/ [Accessed 2010 Dec 14]

  81. 81.

    Howlett HC, Bailey CJ. A risk-benefit assessment of metformin in type 2 diabetes mellitus. Drug Saf 1999; 20: 489–503

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Vasisht KP, Chen SC, Peng Y, et al., editors. Metformin use in diabetes with advanced nephropathy [abstract]. Endo 09; 2009 Jun 10–13; Washington, DC

  83. 83.

    Frid A, Sterner GN, Löndahl M, et al. Novel assay of metformin levels in patients with type 2 diabetes mellitus and varying levels of renal function: clinical recommendations. Diabetes Care 2010; 33: 1291–3

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Bodmer M, Meier C, Krahenbuhl S, et al. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care 2008; 31: 2086–91

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Brady WJ, Carter CT. Metforminoverdose. Am JEmergMed 1997; 15: 107–8

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Guo PY, Storsley LJ, Finkle SN. Severe lactic acidosis treated with prolonged hemodialysis: recovery after massive overdoses of metformin. Semin Dial 2006; 19: 80–3

    PubMed  Article  Google Scholar 

  87. 87.

    Gjedde S, Christiansen A, Pedersen SB, et al. Survival following a metformin overdose of 63 g: a case report. Pharmacol Toxicol 2003; 93: 98–9

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Chang LC, Hung SC, Yang CS. The case: a suicidal woman with delayed high anion gap metabolic acidosis. Kidney Int 2009; 75: 757–8

    PubMed  Article  Google Scholar 

  89. 89.

    Lalau JD, Race JM. Lactic acidosis in metformin-treated patients: prognostic value of arterial lactate levels and plasma metformin concentrations. Drug Saf 1999; 20: 377–84

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Bruijstens LA, van Luin M, Buscher-Jungerhans PM, et al. Reality of severe metformin-induced lactic acidosis in the absence of chronic renal impairment. Neth J Med 2008; 66: 185–90

    PubMed  CAS  Google Scholar 

  91. 91.

    Lalau JD, Race JM. Lactic acidosis in metformin therapy: searching for a link with metformin in reports of ‘metformin-associated lactic acidosi’. Diabetes Obes Metab 2001; 3: 195–201

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Gambineri A, Tomassoni F, Gasparini DI, et al. Organic cation transporter 1 polymorphisms predict the metabolic response to metformin in women with the polycystic ovary syndrome. J Clin Endocrinol Metab 2010; 95: E204–8

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes 2009; 58: 1434–9

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Becker ML, Visser LE, van Schaik RH, et al. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 2009; 9: 242–7

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Becker ML, Visser LE, van Schaik RH, et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 2009; 58: 745–9

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Becker ML, Visser LE, van Schaik RH, et al. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genomics 2010; 20: 38–44

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Jablonski KA, McAteer JB, de Bakker PI, et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes 2010; 59: 2672–81

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Marchetti P, Gregorio F, Benzi L, et al. Diurnal pattern of plasma metformin concentrations and its relation to metabolic effects in type 2 (non-insulin-dependent) diabetic patients. Diabetes Metab 1990; 16: 473–8

    CAS  Google Scholar 

  99. 99.

    Duong JK, Greenup LC, Graham GG, et al. Optimising metformin therapy in patients with renal impairment [poster]. 43rd Annual Scientific Meeting of the Australasian Society of Clinical and Experimental Pharmacology and Toxicology; 2009 Nov 29–Dec 2; Sydney (NSW)

    Google Scholar 

  100. 100.

    Hanze E. Pharmacokinetic and pharmacodynamic modelling of metformin in obese patients with type 2 diabetes [MSc thesis]. Brisbane (QLD) and Uppsala: University of Queensland and University of Uppsala, 2006

    Google Scholar 

  101. 101.

    Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11: 223–41

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Hermann LS, Schersten B, Melander A. Antihyperglycaemic efficacy, response prediction and dose-response relations of treatment with metformin and sulphonylurea, alone and in primary combination. Diabet Med 1994; 11: 953–60

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance was obtained from NH&MRC Programme Grant 568612, Australian Research Council Grant LP 0990670 and St Vincent’s Clinic Foundation Sister Mary Bernice Research Grant. Dr P. Timmins is an employee of Bristol-Myers Squibb Company, who market immediate-release and sustained-release tablets of metformin. All other authors have no conflicts of interest to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Garry G. Graham.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graham, G.G., Punt, J., Arora, M. et al. Clinical Pharmacokinetics of Metformin. Clin Pharmacokinet 50, 81–98 (2011). https://doi.org/10.2165/11534750-000000000-00000

Download citation

Keywords

  • Metformin
  • Memantine
  • Lactic Acidosis
  • Sitagliptin
  • Aliskiren