Pediatric Drugs

, Volume 4, Issue 11, pp 705–715 | Cite as

Prevention and Treatment of Severe Hemodynamic Compromise in Pediatric Heart Transplant Patients

  • John M. Costello
  • Elfriede Pahl
Therapy In Practice


Allograft rejection is a leading cause of severe hemodynamic compromise in pediatric heart transplant patients. A triple-drug immunosuppression regimen, which includes a calcineurin inhibitor, antiproliferative agent, and corticosteroid, suppresses the immune system at multiple different levels for optimal graft protection while minimizing the adverse effects of any one particular agent. Some pediatric centers also use induction therapy with anti-T cell antibodies immediately following transplantation as additional rejection prophylaxis. These antibodies augment immunosuppression by either depleting the T cell pool or blocking interleukin-2 receptors on activated T cells.

Despite the aggressive preventive measures outlined above, some pediatric heart transplant patients will develop severe hemodynamic compromise, most commonly due to fulminant rejection. Such patients require attention to, and optimization of, the four determinants of cardiac output (heart rate, preload, contractility and afterload) to stabilize the circulation until the rejection can be reversed. Careful administration of volume, diuretics, inotropes, and afterload-reducing agents will meet this goal. Patients with allograft rejection require augmentation of immune suppression to facilitate myocardial recovery.

Corticosteroids form the cornerstone of treatment for both cellular and vascular rejection. In patients with refractory cellular rejection, conversion to mycophenolate mofetil or tacrolimus may be appropriate if these agents are not already being used for maintenance immunosuppression. Critically ill patients may additionally benefit from muromonab-CD3 (OKT3) to augment lympholysis. Treatment employed specifically for humoral rejection is prescribed with the intention of suppressing new antibody formation, removing circulating antibody, and improving coronary blood flow. In addition to corticosteroids, cyclophosphamide and antithymocyte globulin or muromonab-CD3, along with plasmapheresis, may improve survival. Systemic heparinization should be considered to minimize coronary thrombosis in patients with humoral rejection. In the future, novel immunosuppressive agents may further assist in the prevention as well as treatment of severe hemodynamic compromise due to rejection in pediatric heart transplant recipients.


Tacrolimus Heart Transplant Mycophenolate Mofetil Calcineurin Inhibitor Daclizumab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.


  1. 1.
    Pahl E, Naftel DC, Canter CE, et al. Death after rejection with severe hemodynamic compromise in pediatric heart transplant recipients: a multi-institutional study. J Heart Lung Transplant 2001; 20(3): 279–87PubMedCrossRefGoogle Scholar
  2. 2.
    Ringewald JM, Gidding SS, Crawford SE, et al. Nonadherence is associated with late rejection in pediatric heart transplant recipients. J Pediatr 2001; 139(1): 75–8PubMedCrossRefGoogle Scholar
  3. 3.
    Denton MD, Magee CC, Sayegh MH. Immunosuppressive strategies in transplantation. Lancet 1999; 353(9158): 1083–91PubMedCrossRefGoogle Scholar
  4. 4.
    Liu J, Farmer Jr JD, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66(4): 807–15PubMedCrossRefGoogle Scholar
  5. 5.
    Kahan BD. Cyclosporine. N Engl J Med 1989; 321(25): 1725–38PubMedCrossRefGoogle Scholar
  6. 6.
    Carrier M, White M, Pellerin M, et al. Comparison of neoral and sandimmune cyclosporine for induction of immunosuppression after heart transplantation. Can J Cardiol 1997; 13(5): 469–73PubMedGoogle Scholar
  7. 7.
    White M, Pelletier GB, Tan A, et al. Pharmacokinetic, hemodynamic, and metabolic effects of cyclosporine sandimmune versus the microemulsion neoral in heart transplant recipients. J Heart Lung Transplant 1997; 16(8): 787–94PubMedGoogle Scholar
  8. 8.
    Shah MB, Martin JE, Schroeder TJ, et al. The evaluation of the safety and tolerability of two formulations of cyclosporine — neoral and sandimmune: a metaanalysis. Transplantation 1999; 67(11): 1411–7PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor DO, Barr ML, Radovancevic B, et al. A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant 1999; 18(4): 336–45PubMedCrossRefGoogle Scholar
  10. 10.
    Asante-Korang A, Boyle GJ, Webber SA, et al. Experience of FK506 immune suppression in pediatric heart transplantation: a study of long-term adverse effects. J Heart Lung Transplant 1996; 15(4): 415–22PubMedGoogle Scholar
  11. 11.
    Paolillo JA, Boyle GJ, Law YM, et al. Posttransplant diabetes mellitus in pediatric thoracic organ recipients receiving tacrolimus-based immunosuppression. Transplantation 2001; 71(2): 252–6PubMedCrossRefGoogle Scholar
  12. 12.
    Dobrolet NC, Webber SA, Blatt J, et al. Hematologie abnormalities in children and young adults receiving tacrolimus-based immunosuppression following cardiothoracic transplantation. Pediatr Transplant 2001; 5(2): 125–31PubMedCrossRefGoogle Scholar
  13. 13.
    Boucek MM, Faro A, Novick RJ, et al. The Registry of the International Society for Heart and Lung Transplantation: fourth official pediatric report, 2000. J Heart Lung Transplant 2001; 20(1): 39–52PubMedCrossRefGoogle Scholar
  14. 14.
    Robinson BV, Boyle GJ, Miller SA, et al. Optimal dosing of intravenous tacrolimus following pediatric heart transplantation. J Heart Lung Transplant 1999; 18(8): 786–91PubMedCrossRefGoogle Scholar
  15. 15.
    Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993; 136: 5–28PubMedCrossRefGoogle Scholar
  16. 16.
    Sievers TM, Rossi SJ, Ghobrial RM, et al. Mycophenolate mofetil. Pharmacotherapy 1997; 17(6): 1178–97PubMedGoogle Scholar
  17. 17.
    Eugui EM, Almquist SJ, Muller CD, et al. Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scand J Immunol 1991; 33(2): 161–73PubMedCrossRefGoogle Scholar
  18. 18.
    Allison AC, Kowalski WJ, Muller CJ, et al. Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant Proc 1993; 25 (3 Suppl. 2): 67–70PubMedGoogle Scholar
  19. 19.
    Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation 1998; 66(4): 507–15PubMedCrossRefGoogle Scholar
  20. 20.
    Seebacher G, Weigel G, Griesmacher A, et al. One and a half years of experience with mycophenolate mofetil (Cellcept) in cardiac transplantation: a prospective, randomized study. Transplant Proc 1999; 31(8): 3291–3PubMedCrossRefGoogle Scholar
  21. 21.
    Dipchand AI, Pietra B, McCrindle BW, et al. Mycophenolic acid levels in pediatric heart transplant recipients receiving mycophenolate mofetil. J Heart Lung Transplant 2001; 20(10): 1035–43PubMedCrossRefGoogle Scholar
  22. 22.
    Dipchand AI, Benson L, McCrindle BW, et al. Mycophenolate mofetil in pediatric heart transplant recipients: a single-center experience. Pediatr Transplant 2001; 5(2): 112–8PubMedCrossRefGoogle Scholar
  23. 23.
    Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 1992; 358(6381): 70–3PubMedCrossRefGoogle Scholar
  24. 24.
    Terada N, Lucas JJ, Szepesi A, et al. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun 1992; 186(3): 1315–21PubMedCrossRefGoogle Scholar
  25. 25.
    MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 2001; 71(2): 271–80PubMedCrossRefGoogle Scholar
  26. 26.
    Hong JC, Kahan BD. A calcineurin antagonist-free induction strategy for immunosuppression in cadaveric kidney transplant recipients at risk for delayed graft function. Transplantation 2001; 71(9): 1320–8PubMedCrossRefGoogle Scholar
  27. 27.
    Snell GI, Levvey B, Chin W, et al. Sirolimus (rapamycin) allows renal recovery in lung and heart transplant recipients with chronic renal impairment. J Heart Lung Transplant 2001; 20(2): 163–4PubMedCrossRefGoogle Scholar
  28. 28.
    Scudeletti M, Castagnetta L, Imbimbo B, et al. New glucocorticoids: mechanisms of immunological activity at the cellular level and in the clinical setting. Ann NY Acad Sci 1990; 595: 368–82PubMedCrossRefGoogle Scholar
  29. 29.
    Scheinman RI, Cogswell PC, Lofquist AK, et al. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 1995; 270(5234): 283–6PubMedCrossRefGoogle Scholar
  30. 30.
    Auphan N, DiDonato JA, Rosette C, et al. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995; 270(5234): 286–90PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrazzi P, Fiocchi R, Gamba A, et al. Pediatric heart transplantation without chronic maintenance steroids. J Heart Lung Transplant 1993; 12 (6 Pt 2): S241–5PubMedGoogle Scholar
  32. 32.
    Canter CE, Moorhead S, Saffitz JE, et al. Steroid withdrawal in the pediatric heart transplant recipient initially treated with triple immunosuppression. J Heart Lung Transplant 1994; 13 (1 Pt 1): 74–9PubMedGoogle Scholar
  33. 33.
    Reinherz EL, Kung PC, Goldstein G, et al. A monoclonal antibody with selective reactivity with functionally mature human thymocytes and all peripheral human T cells. J Immunol 1979; 123(3): 1312–7PubMedGoogle Scholar
  34. 34.
    Van Wauwe JP, De Mey JR, Goossens JG. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol 1980; 124(6): 2708–13PubMedGoogle Scholar
  35. 35.
    Gilbert EM, Eiswirth CC, Renlund DG, et al. Use of orthoclone OKT3 monoclonal antibody in cardiac transplantation: early experience with rejection prophylaxis and treatment of refractory rejection. Transplant Proc 1987; 19 (2 Suppl. 1): 45–53PubMedGoogle Scholar
  36. 36.
    Landegren U, Ramstedt U, Axberg I, et al. Selective inhibition of human T cell cytotoxicity at levels of target recognition or initiation of lysis by monoclonal OKT3 and Leu-2a antibodies. J Exp Med 1982; 155(5): 1579–84PubMedCrossRefGoogle Scholar
  37. 37.
    Bonnefoy-Berard N, Revillard JP. Mechanisms of immunosuppression induced by antithymocyte globulins and OKT3. J Heart Lung Transplant 1996; 15(5): 435–42PubMedGoogle Scholar
  38. 38.
    Breisblatt WM, Schulman DS, Stein K, et al. Hemodynamic response to OKT3 in orthotopic heart transplant recipients: evidence for reversible myocardial dysfunction. J Heart Lung Transplant 1991; 10(3): 359–65PubMedGoogle Scholar
  39. 39.
    Chatenoud L, Ferran C, Reuter A, et al. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-gamma [corrected]. N Engl J Med 1989; 320(21): 1420–1PubMedCrossRefGoogle Scholar
  40. 40.
    Hosenpud JD, Norman DJ, Pantely GA, et al. OKT3-induced hypotension in heart allograft recipients treated for steroid-resistant rejection. J Heart Transplant 1989; 8(2): 159–65PubMedGoogle Scholar
  41. 41.
    van Gelder T, Balk AH, Jonkman FA, et al. A randomized trial comparing safety and efficacy of OKT3 and a monoclonal anti-interleukin-2 receptor antibody (BT563) in the prevention of acute rejection after heart transplantation. Transplantation 1996; 62(1): 51–5PubMedCrossRefGoogle Scholar
  42. 42.
    O’Connell JB, Renlund DG, Hammond EH, et al. Sensitization to OKT3 monoclonal antibody in heart transplantation: correlation with early allograft loss. J Heart Lung Transplant 1991; 10(2): 217–21PubMedGoogle Scholar
  43. 43.
    Hammond EH, Wittwer CT, Greenwood J, et al. Relationship of OKT3 sensitization and vascular rejection in cardiac transplant patients receiving OKT3 rejection prophylaxis. Transplantation 1990; 50(5): 776–82PubMedCrossRefGoogle Scholar
  44. 44.
    Kobashigawa JA, Stevenson LW, Brownfield E, et al. Does short-course induction with OKT3 improve outcome after heart transplantation: a randomized trial. J Heart Lung Transplant 1993; 12(2): 205–8PubMedGoogle Scholar
  45. 45.
    Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med 1990; 323(25): 1723–8PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson MR, Mullen GM, O’Sullivan EJ, et al. Risk/benefit ratio of perioperative OKT3 in cardiac transplantation. Transplant Proc 1993; 25 (1 Pt2): 1149–51PubMedGoogle Scholar
  47. 47.
    Kirklin JK, Bourge RC, White-Williams C, et al. Prophylactic therapy for rejection after cardiac transplantation: a comparison of rabbit antithymocyte globulin and OKT3. J Thorac Cardiovasc Surg 1990; 99(4): 716–24PubMedGoogle Scholar
  48. 48.
    Boucek Jr RJ, Naftel D, Boucek MM, et al. Induction immunotherapy in pediatric heart transplant recipients: a multicenter study. J Heart Lung Transplant 1999; 18(5): 460–9PubMedCrossRefGoogle Scholar
  49. 49.
    Nashan B, Moore R, Amlot P, et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 1997; 350(9086): 1193–8PubMedCrossRefGoogle Scholar
  50. 50.
    Kahan BD, Rajagopalan PR, Hall M. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. United States Simulect Renal Study Group. Transplantation 1999; 67(2): 276–84PubMedCrossRefGoogle Scholar
  51. 51.
    Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 1998; 338(3): 161–5PubMedCrossRefGoogle Scholar
  52. 52.
    Beniaminovitz A, Itescu S, Lietz K, et al. Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N Engl J Med 2000; 342(9): 613–9PubMedCrossRefGoogle Scholar
  53. 53.
    Wolfe JT, Lessin SR, Singh AH, et al. Review of immunomodulation by photopheresis: treatment of cutaneous T-cell lymphoma, autoimmune disease, and allograft rejection. Artif Organs 1994; 18(12): 888–97PubMedCrossRefGoogle Scholar
  54. 54.
    Barr ML, McLaughlin SN, Murphy MP, et al. Prophylactic photopheresis and effect on graft atherosclerosis in cardiac transplantation. Transplant Proc 1995; 27(3): 1993–4PubMedGoogle Scholar
  55. 55.
    Barr ML, Meiser BM, Eisen Hj, et al. Photopheresis for the prevention of rejection in cardiac transplantation. Photopheresis Transplantation Study Group. N Engl J Med 1998; 339(24): 1744–51PubMedCrossRefGoogle Scholar
  56. 56.
    McNamara D, Di Salvo T, Mathier M, et al. Left ventricular dysfunction after heart transplantation: incidence and role of enhanced immunosuppression. J Heart Lung Transplant 1996; 15(5): 506–15PubMedGoogle Scholar
  57. 57.
    Friedman WF, George BL. Treatment of congestive heart failure by altering loading conditions of the heart. J Pediatr 1985; 106(5): 697–706PubMedCrossRefGoogle Scholar
  58. 58.
    Hoffman JIE. Structure and function of the heart. In: Fuhrman BP, Zimmerman JJ, editors. Pediatric critical care. St Louis (MO): Mosby Year Book, 1992: 215–8Google Scholar
  59. 59.
    Deal BJ, Wolff GS, Gelband H, editors. Current concepts in diagnosis and management of arrhythmias in infants and children. Armonk (NY): Futura Publishing Company, Inc., 1998Google Scholar
  60. 60.
    Dreyer WJ, Mayer DC, Neish SR. Cardiac contractility and pump function. In: Garson Jr A, Brucker JT, Fisher DJ, et al., editors. The science and practice of pediatric cardiology. Baltimore (MD): Williams and Wilkins, 1998: 211–20Google Scholar
  61. 61.
    Bohn DJ, Poirier CS, Edmonds JF, et al. Hemodynamic effects of dobutamine after cardiopulmonary bypass in children. Crit Care Med 1980; 8(7): 367–71PubMedCrossRefGoogle Scholar
  62. 62.
    Habib DM, Padbury JF, Anas NG, et al. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 1992; 20(5): 601–8PubMedCrossRefGoogle Scholar
  63. 63.
    Berg RA, Donnerstein RL, Padbury JF. Dobutamine infusions in stable, critically ill children: pharmacokinetics and hemodynamic actions. Crit Care Med 1993; 21(5): 678–86PubMedCrossRefGoogle Scholar
  64. 64.
    Chang AC, Atz AM, Wernovsky G, et al. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med 1995; 23(11): 1907–14PubMedCrossRefGoogle Scholar
  65. 65.
    Bailey JM, Miller BE, Lu W, et al. The pharmacokinetics of milrinone in pediatric patients after cardiac surgery. Anesthesiology 1999; 90(4): 1012–8PubMedCrossRefGoogle Scholar
  66. 66.
    Tobin JR, Wetzel RC. Shock and multi-organ system failure. In: Rogers MC, editor. Textbook of pediatric intensive care. Baltimore (MD): Williams and Wilkins, 1996: 590–3Google Scholar
  67. 67.
    Wessel DL. Managing low cardiac output syndrome after congenital heart surgery. Crit Care Med 2001; 29(10 Suppl.): S220–30PubMedCrossRefGoogle Scholar
  68. 68.
    Grace MP, Greenbaum DM. Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 1982; 10(6): 358–60PubMedCrossRefGoogle Scholar
  69. 69.
    Mathru M, Rao TL, El-Etr AA, et al. Hemodynamic response to changes in ventilatory patterns in patients with normal and poor left ventricular reserve. Crit Care Med 1982; 10(7): 423–6PubMedCrossRefGoogle Scholar
  70. 70.
    Pinsky MR, Summer WR. Cardiac augmentation by phasic high intrathoracic pressure support in man. Chest 1983; 84(4): 370–5PubMedCrossRefGoogle Scholar
  71. 71.
    Duncan BW, Hraska V, Jonas RA, et al. Mechanical circulatory support in children with cardiac disease. J Thorac Cardiovasc Surg 1999; 117(3): 529–42PubMedCrossRefGoogle Scholar
  72. 72.
    Duncan BW, Bohn DJ, Atz AM, et al. Mechanical circulatory support for the treatment of children with acute fulminant myocarditis. J Thorac Cardiovasc Surg 2001; 122(3): 440–8PubMedCrossRefGoogle Scholar
  73. 73.
    Arafa O, Fiane AE, Svennevig JL, et al. Mechanical circulatory support of heart transplant patients. Transplant Proc 2001; 33(1–2): 1603–4PubMedCrossRefGoogle Scholar
  74. 74.
    Billingham ME, Cary NR, Hammond ME, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant 1990; 9(6): 587–93PubMedGoogle Scholar
  75. 75.
    Lonquist JL, Radovancevic B, Vega JD, et al. Re-evaluation of steroid tapering after steroid pulse therapy for heart rejection. J Heart Lung Transplant 1992; 11(5): 913–9PubMedGoogle Scholar
  76. 76.
    Gilbert EM, Dewitt CW, Eiswirth CC, et al. Treatment of refractory cardiac allograft rejection with OKT3 monoclonal antibody. Am J Med 1987; 82(2): 202–6PubMedCrossRefGoogle Scholar
  77. 77.
    Haverty TP, Sanders M, Sheahan M. OKT3 treatment of cardiac allograft rejection. J Heart Lung Transplant 1993; 12(4): 591–8PubMedGoogle Scholar
  78. 78.
    O’Connell JB, Renlund DG, Gay Jr WA, et al. Efficacy of OKT3 retreatment for refractory cardiac allograft rejection. Transplantation 1989; 47(5): 788–92PubMedCrossRefGoogle Scholar
  79. 79.
    Cantarovich M, Latter DA, Loertscher R. Treatment of steroid-resistant and recurrent acute cardiac transplant rejection with a short course of antibody therapy. Clin Transpl 1997; 11(4): 316–21Google Scholar
  80. 80.
    Wagner FM, Reichenspurner H, Uberfuhr P, et al. How successful is OKT3 rescue therapy for steroid-resistant acute rejection episodes after heart transplantation. J Heart Lung Transplant 1994; 13(3): 438–42PubMedGoogle Scholar
  81. 81.
    Kirklin JK, Bourge RC, Naftel DC, et al. Treatment of recurrent heart rejection with mycophenolate mofetil (RS-61443): initial clinical experience. J Heart Lung Transplant 1994; 13(3): 444–50PubMedGoogle Scholar
  82. 82.
    Onsager DR, Canver CC, Jahania MS, et al. Efficacy of tacrolimus in the treatment of refractory rejection in heart and lung transplant recipients. J Heart Lung Transplant 1999; 18(5): 448–55PubMedCrossRefGoogle Scholar
  83. 83.
    Yamani MH, Starling RC, Pelegrin D, et al. Efficacy of tacrolimus in patients with steroid-resistant cardiac allograft cellular rejection. J Heart Lung Transplant 2000; 19(4): 337–42PubMedCrossRefGoogle Scholar
  84. 84.
    Bouchart F, Gundry SR, Van Schaack-Gonzales J, et al. Methotrexate as rescue/adjunctive immunotherapy in infant and adult heart transplantation. J Heart Lung Transplant 1993; 12(3): 427–33PubMedGoogle Scholar
  85. 85.
    Hammond EH, Yowell RL, Nunoda S, et al. Vascular (humoral) rejection in heart transplantation: pathologic observations and clinical implications. J Heart Transplant 1989; 8(6): 430–43PubMedGoogle Scholar
  86. 86.
    Miller LW, Wesp A, Jennison SH, et al. Vascular rejection in heart transplant recipients. J Heart Lung Transplant 1993; 12(2): S147–52PubMedGoogle Scholar
  87. 87.
    Hammond EH, Yowell RL, Price GD, et al. Vascular rejection and its relationship to allograft coronary artery disease. J Heart Lung Transplant 1992; 11 (3 Pt 2): S111–9PubMedGoogle Scholar
  88. 88.
    Olsen SL, Wagoner LE, Hammond EH, et al. Vascular rejection in heart transplantation: clinical correlation, treatment options, and future considerations. J Heart Lung Transplant 1993; 12(2): S135–42PubMedGoogle Scholar
  89. 89.
    Zales VR, Crawford S, Backer CL, et al. Spectrum of humoral rejection after pediatric heart transplantation. J Heart Lung Transplant 1993; 12(4): 563–71PubMedGoogle Scholar
  90. 90.
    Costanzo-Nordin MR, Heroux AL, Radvany R, et al. Role of humoral immunity in acute cardiac allograft dysfunction. J Heart Lung Transplant 1993; 12(2): S143–6PubMedGoogle Scholar
  91. 91.
    Grauhan O, Muller J, von Baeyer H, et al. Treatment of humoral rejection after heart transplantation. J Heart Lung Transplant 1998; 17(12): 1184–94PubMedGoogle Scholar
  92. 92.
    Schuurman HJ, Jambroes G, Borleffs JC, et al. Acute humoral rejection in a heart transplant recipient. Transplant Proc 1989; 21 (1 Pt 3): 2529–30PubMedGoogle Scholar
  93. 93.
    Partanen J, Nieminen MS, Krogerus L, et al. Heart transplant rejection treated with plasmapheresis. J Heart Lung Transplant 1992; 11 (2 Pt 1): 301–5PubMedGoogle Scholar
  94. 94.
    Ratkovec RM, Hammond EH, O’Connell JB, et al. Outcome of cardiac transplant recipients with a positive donor-specific crossmatch: preliminary results with plasmapheresis. Transplantation 1992; 54(4): 651–5PubMedCrossRefGoogle Scholar
  95. 95.
    Berglin E, Kjellstrom C, Mantovani V, et al. Plasmapheresis as a rescue therapy to resolve cardiac rejection with vasculitis and severe heart failure: a report of five cases. Transpl Int 1995; 8(5): 382–7PubMedCrossRefGoogle Scholar
  96. 96.
    Pahl E, Crawford SE, Cohn RA, et al. Reversal of severe late left ventricular failure after pediatric heart transplantation and possible role of plasmapheresis. Am J Cardiol 2000; 85: 735–9PubMedCrossRefGoogle Scholar
  97. 97.
    Olivari MT, May CB, Johnson NA, et al. Treatment of acute vascular rejection with immunoadsorption. Circulation 1994; 90 (5 Pt II): II70–3PubMedGoogle Scholar
  98. 98.
    Michler RE, Edwards NM, Hsu D, et al. Pediatric retransplantation. J Heart Lung Transplant 1993; 12 (6 Pt 2): S319–27PubMedGoogle Scholar
  99. 99.
    Dearani JA, Razzouk AJ, Gundry SR, et al. Pediatric cardiac retransplantation: intermediate-term results. Ann Thorac Surg 2001; 71(1): 66–70PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • John M. Costello
    • 1
    • 2
  • Elfriede Pahl
    • 2
  1. 1.Division of Pulmonary and Critical Care Medicine, Department of Pediatrics, The Children’s Memorial HospitalFeinberg School of Medicine at Northwestern UniversityChicagoUSA
  2. 2.Division of Cardiology, Department of Pediatrics, The Children’s Memorial HospitalFeinberg School of Medicine at Northwestern UniversityChicagoUSA

Personalised recommendations