Skip to main content
Log in

Treatment Options for Juvenile-Onset Systemic Lupus Erythematosus

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is an inflammatory chronic disease characterized by the presence of activated helper T-cells that induce a B-cell response, resulting in the secretion of pathogenic autoantibodies and the formation of immune complexes. SLE in children is a disease of low prevalence with a wide range of clinical manifestations, which means that the number of randomized controlled studies are few and usually involve a small number of patients.

In recent years, new therapeutic agents have appeared and the role of older treatments has been clarified. Many of these treatments are designed to reduce inflammation. The spectrum is broad and ranges from traditional nonsteroidal anti-inflammatory drugs (NSAIDs) to cytotoxic agents that have anti-inflammatory effects. The current treatment of children or adults depends on the clinical expression of the disease. Minor manifestations usually respond to the administration of NSAIDs, low doses of corticosteroids, hydroxychloroquine, or methotrexate. Thalidomide could be used for refractory skin lesions. Major manifestations can endanger the patient’s life and require early, aggressive treatment. Kidney disease and other manifestations have been related to the formation or deposit of tissular immune complexes. Therefore, for years the main aim of treatment has been to suppress the immune response. The immunosuppressant treatments used in children with SLE include high doses of corticosteroids, azathioprine, methotrexate, cyclosporine, and cyclophosphamide. Several combinations of medications have been used to obtain a rapid remission or to reduce the risk of toxicity of prolonged administration of cytotoxic agents.

Intravenous γ-globulin has been successfully used in the treatment of lupus nephritis, vasculitis, and acute thrombocytopenia. In spite of numerous published studies, the use of these drugs is still controversial. The immunosuppression achieved with these treatments is nonspecific, not always effective, and associated with significant toxicities; the most significant being growth retardation, accelerated atherosclerosis and severe infectious complications. The purpose of new biological therapies is to achieve specific immunosuppression, which makes it possible to design more effective and less toxic therapeutic strategies. Mycophenolate mofetil is a promising alternative in patients who do not respond to high doses of cyclophosphamide or azathioprine. Some recently developed monoclonal antibodies such as anti-CD40L or anti-IL-10, or other molecules such as LJP394 may prove useful in the near future. Finally, stem cell transplantation may be proposed in patients with severe juvenile-onset SLE who do not respond to any treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3
Table II

Similar content being viewed by others

References

  1. Hahn BH. An overview of the pathogenesis of systemic lupus erythematosus. In: Wallace DJ, Hahn BH, editors. Dubois’lupus erythematosus. 5th ed. Baltimore (MD): Williams & Wilkins, 1997: 75

    Google Scholar 

  2. Kotzin BL. Systemic lupus erythematosus. Cell 1996; 85: 303–6

    PubMed  CAS  Google Scholar 

  3. Winchester RJ. Systemic lupus erythematosus: pathogenesis. In: Koopman WJ, editor. Arthritis and allied conditions: a textbook of rheumatology. 13th ed. Philadelphia (PA): Lea & Febiger, 1997: 1391

    Google Scholar 

  4. Love LA. New environmental agents associated with lupus-like disorders. Lupus 1994; 3: 467–71

    PubMed  CAS  Google Scholar 

  5. Yung RL, Richardson BC. Role of T cell DNA methylation in lupus syndromes. Lupus 1994; 1: 487–91

    Google Scholar 

  6. Behar SM, Porcelli SA. Mechanism of autoimmune disease induction: the role of the immune response to microbial pathogens. Arthritis Rheum 1995; 4: 458–76

    Google Scholar 

  7. Theofilopoulos AN. The basis of autoimmunity (part 1): mechanism of aberrant self-recognition. Immunol Today 1995; 16: 90–8

    PubMed  CAS  Google Scholar 

  8. Mysler E, Bini P, Drappa J, et al. The apoptosis-1/Fas protein in human systemic lupus erythematosus. J Clin Invest 1994; 93: 1029–34

    PubMed  CAS  Google Scholar 

  9. Stohi W. Impared polyclonal T cell cytolytic activity: a possible risk factor for systemic lupus erythematosus. Arthritis Rheum 1995; 38: 506–16

    Google Scholar 

  10. Dayal AK, Kammer M. The T cell enigma in lupus. Arthritis Rheum 1996; 39: 23–33

    PubMed  CAS  Google Scholar 

  11. Alarcón-Segovia D, Ruíz-Argüelles A, Llorente L. Broken the dogma: penetration of autoantibodies into living cells. Immunol Today 1996; 17: 163–4

    PubMed  Google Scholar 

  12. Mohan C, Adains S, Stanik V, et al. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 1993: 177; 1367–1381

    PubMed  CAS  Google Scholar 

  13. Craft J, Fatenejad S. Self-antigens and epitope spreading in systemic autoimmunity. Arthritis Rheum 1997; 40: 1374–82

    PubMed  CAS  Google Scholar 

  14. Barron KS, Decunto CL, Montalvo JF, et al. Abnormalities of immunoregulation in juvenile rheumatoid arthritis. J Rheumatol 1989; 16: 940–8

    PubMed  CAS  Google Scholar 

  15. Silverman ED, Somma C, Khan MM, et al. Abnormal T suppressor cell function in juvenile rheumatoid arthritis. Arthritis Rheum 1990; 33: 205–11

    PubMed  CAS  Google Scholar 

  16. Hahn BJ, Ebling FM, Panosian-Sahakian N, et al. Idiotype selection is an immunoregulatory mechanism which contributes to the pathogenesis of systemic lupus erythematosus. J Autoimmun 1989; 1: 673–81

    Google Scholar 

  17. Alcocer-Varela J, Llorente L, Alarcón-Segovia D. Immunoregulatory circuits and potential treatment of connective tissue diseases. Int Arch Allerg Immunol 1996; 111: 348–54

    CAS  Google Scholar 

  18. Cassidy JT, Petty RS. Juvenile rheumatoid arthritis. In: Cassidy JT, Petty RS, editors. Textbook of pediatric rheumatology. Philadelphia (PA): WB Saunders, 1995: 223

    Google Scholar 

  19. Carreño L, López-Longo FJ, Monteagudo I, et al. Immunological and clinical differences between juvenile and adult onset of systemic lupus erythematosus. Lupus 1999; 8: 287–92

    PubMed  Google Scholar 

  20. Östensen M, Villiger PM. Nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus. Lupus 2001; 10: 135–9

    PubMed  Google Scholar 

  21. Espinoza LR, Jara LJ, Martínez-Osuna P, et al. Refractory nephrotic syndrome in lupus nephritis: favorable response to indomethacin therapy. Lupus 1993; 2: 9–14

    PubMed  CAS  Google Scholar 

  22. Ruiz-Irastorza G, Khamashta MA, Hughes GRV. Antiaggregant and anticoagulant therapy in systemic lupus erythematosus and Hughes syndrome. Lupus 2001; 10: 241–5

    PubMed  CAS  Google Scholar 

  23. Chatham WW, Kimberly RP. Treatment of lupus with corticosteroids. Lupus 2001; 10: 140–7

    PubMed  CAS  Google Scholar 

  24. Ting WW, Sontheimer RD. Local therapy for cutaneous and systemic lupus erythematosus: practical and theoretical considerations. Lupus 2001; 10: 171–84

    PubMed  CAS  Google Scholar 

  25. Ilowite NT, Samuel P, Ginzler E, et al. Dyslipoproteinemia in pediatric systemic lupus erythematosus. Arthritis Rheum 1988; 31: 859–63

    PubMed  CAS  Google Scholar 

  26. Baqi N, Moazami S, Singh A, et al. Lupus nephritis in children: a longitudinal study of prognostic factors and therapy. J Am Soc Nephrol 1996; 7: 924–9

    PubMed  CAS  Google Scholar 

  27. Niaudet P. Treatment of lupus nephritis in children. Pediatr Nephrol 2000; 14: 158–66

    PubMed  CAS  Google Scholar 

  28. The Canadian Hydroxychloroquine Study Group. A randomised study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N Engl J Med 1991; 324: 150–4

    Google Scholar 

  29. Petri M. Thrombosis and systemic lupus erythematosus: The Hopkins Lupus Cohort perspective. Scand J Rheumatol 1996; 25: 191–3

    PubMed  CAS  Google Scholar 

  30. Bruce IN, Gladman DD, Urowitz MB. Premature atherosclerosis in systemic lupus erythematosus. Rheum Dis Clin North Am 2000; 26: 257–78

    PubMed  CAS  Google Scholar 

  31. D Cruz D. Antimalarial therapy: a panacea for mild lupus? Lupus 2001; 10: 148–51

    CAS  Google Scholar 

  32. Klippel JH, Austin HA, Balow JE, et al. Studies of immunosuppressive drugs in the treatment of lupus nephritis. Rheum Dis Child 1987; 13: 47–56

    CAS  Google Scholar 

  33. Silverman ED, Eddy AA. Systemic lupus erythematosus in children. In: Maddison PJ, Isenberg DA, Woo P, et al., editors. Oxford textbook of rheumatology, 2nd ed. Oxford: Oxford University Press, 1998: 1202

    Google Scholar 

  34. Austin HA, Klippel JH, Balow JE, et al. Therapy of lupus nephritis: controlled trial of prednisone and cytotoxic drugs. N Engl J Med 1986; 314: 614–9

    PubMed  Google Scholar 

  35. Cameron JS. Lupus nephritis in childhood and adolescence. Pediatr Nephrol 1994; 8: 230–49

    PubMed  CAS  Google Scholar 

  36. Lehman TJA, Onel K. Intermittent intravenous cyclophosphamide arrests progression of the renal chronicity index in childhood systemic lupus erythematosus. J Pediatr 2000; 136: 243–7

    PubMed  CAS  Google Scholar 

  37. Baca V, Lavalle C, Garcia R, et al. Favorable response to intravenous methylprednisolone and cyclophosphamide in children with severe neuropsychiatric lupus. J Rheumatol 1999; 26: 432–9

    PubMed  CAS  Google Scholar 

  38. Takada K, Illei GG, Boumpas DT. Cyclophosphamide for the treatment of systemic lupus erythematosus. Lupus 2001; 10: 154–61

    PubMed  CAS  Google Scholar 

  39. Blumenfeld Z, Shapiro D, Steinberg M, et al. Preservation of fertility and ovarian function and minimizing gonadotoxicity in young women with systemic lupus erythematosus treated by chemotherapy. Lupus 2000; 9: 401–5

    PubMed  CAS  Google Scholar 

  40. Abu-Shakra M, Shoenfeld Y. Azathioprine therapy for patients with systemic lupus erythematosus. Lupus 2001; 10: 152–3

    PubMed  CAS  Google Scholar 

  41. Ramsey-Goldman R, Schilling E. Immunosupressive drug use during pregnancy. Rheum Dis Clin North Am 1997; 23: 149–67

    PubMed  CAS  Google Scholar 

  42. Silverman E. What’s new in the treatment of pediatric SLE. J Rheumatol 1996; 23: 1657–60

    PubMed  CAS  Google Scholar 

  43. Nossent HC, Koldingsnes W. Long-term efficacy of azathioprine treatment for proliferative lupus nephritis. Rheumatology 2000; 39: 969–74

    PubMed  CAS  Google Scholar 

  44. Cronstein BN, Naime D, Ostad E. The anti-inflammatory mechanism of methotrexate: increased adenosine release at inflammed site diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 1993; 92: 2675–82

    PubMed  CAS  Google Scholar 

  45. Giannini EH, Brewer EJ, Kuzmina N, et al. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the USA-USSR double-blind, placebo-controlled trial. N Engl J Med 1992; 326: 1043–9

    PubMed  CAS  Google Scholar 

  46. Abud-Mendoza C, Sturbaum AK, Vázquez-Compean R, et al. Methotrexate therapy in childhood systemic lupus erythematosus. J Rheumatol 1993; 20: 731–3

    PubMed  CAS  Google Scholar 

  47. Ravelli A, Ballardini G, Viola S, et al. Methotrexate therapy in refractory pediatric onset systemic lupus erythematosus. J Rheumatol 1998; 25: 572–5

    PubMed  CAS  Google Scholar 

  48. Carneiro JR, Sato EI. Double-blind, randomized, placebo controlled clinical trial of methotrexate in systemic lupus erythematosus. J Rheumatol 1999; 26: 1275–9

    PubMed  CAS  Google Scholar 

  49. Sato EI. Methotrexate therapy in systemic lupus erythematosus. Lupus 2001; 10: 162–4

    PubMed  CAS  Google Scholar 

  50. Östensen M, Höyeraal MM, Kas E. Tolerance of cyclosporine A in children with refractory juvenile chronic arthritis. J Rheumatol 1988; 15: 1536–8

    PubMed  Google Scholar 

  51. Baca V, Catalán T, Ramón G, et al. Effect of low-dose cyclosporin A in the treatment of lupus nephritis in children. Arthritis Rheum 1999; 42: S225

    Google Scholar 

  52. Fu LW, Yang LY, Chen WP, et al. Clinical efficacy of cyclosporin A neoral in the treatment of paediatric lupus nephritis with heavy proteinuria. Br J Rheumatol 1998; 37: 217–21

    PubMed  CAS  Google Scholar 

  53. Dammacco F, Della Casa Alberighi O, Ferraccioli G, et al. Cyclosporin-A plus steroids versus steroids alone in the 12-month treatment of systemic lupus erythematosus. Int J Clin Lab Res 2000; 30: 67–73

    PubMed  CAS  Google Scholar 

  54. Tseng S, Pak G, Washenik K, et al. Rediscovering thalidomide: a review of its mechanism of action, side effects, and potential uses. J Am Acad Dermatol 1996; 35: 969–79

    PubMed  CAS  Google Scholar 

  55. Karim MY, Ruiz-Irastorza G, Khamashta M, et al. Update on therapy: thalidomide in the treatment of lupus. Lupus 2001; 10: 188–92

    PubMed  CAS  Google Scholar 

  56. Powell RJ, Gradner-Medwin JMM. Guideline for the clinical use and dispensing of thalidomide. Postgrad Med J 1994; 70: 901–4

    PubMed  CAS  Google Scholar 

  57. Davis JC, Austin H, Boumpas D, et al. A pilot study of 2 chloroxyadenosine (2-CdA) in the treatment of systemic lupus erythematosus associated glomerulonephritis. Arthritis Rheum 1998; 41: 335–43

    PubMed  CAS  Google Scholar 

  58. McMurray RW, Elbourne KB, Lagoo A, et al. Mycophenolate mofetil suppresses autoimmunity and mortality in the female NZB x NZW F1 mouse model of systemic lupus erythematosus. J Rheumatol 1998; 25: 2364–70

    PubMed  CAS  Google Scholar 

  59. Briggs WA, Choi MJ, Scheel PJ. Successful mofetil treatment of glomerular disease. Am J Kidney Dis 1998; 31: 213–7

    PubMed  CAS  Google Scholar 

  60. Glicklich D, Acharya A. Mycophenolate mofetil therapy for lupus nephritis refractory to intravenous cyclophosphamide. Am J Kidney Dis 1998; 32: 318–22

    PubMed  CAS  Google Scholar 

  61. Gaubitz M, Schorat A, Schotte H, et al. Mycophenolate mofetil for the treatment of systemic lupus erythematosus: an open pilot trial. Lupus 1999; 8: 731–6

    PubMed  CAS  Google Scholar 

  62. Pachinian N, Wallace DJ, Klinenberg JR. Mycophenolate mofetil for systemic lupus erythematosus. J Clin Rheumatol 1999; 5: 374–6

    PubMed  CAS  Google Scholar 

  63. Dooley MA, Cosio FG, Nachman PH, et al. Mycophenolate mofetil therapy in lupus nephritis: clinical observations. J Am Soc Nephrol 1999; 10: 833–9

    PubMed  CAS  Google Scholar 

  64. Adu D, Cross J, Jayne DRW. Treatment of systemic lupus erythematosus with mycophenolate mofetil. Lupus 2001; 10: 203–8

    PubMed  CAS  Google Scholar 

  65. Chan TM, Li FK, Tang CS, et al. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. N Engl J Med 2000; 343: 1156–62

    PubMed  CAS  Google Scholar 

  66. Guglielmotti A, Aquilini L, D Onofrio E, et al. Bindarit prolongs survival and reduces renal damage in NZB/W lupus mice. Clin Exp Rheumatol 1998; 16: 149–54

    PubMed  CAS  Google Scholar 

  67. Zoja C, Corna G, Morigi M, et al. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney Int 1998; 53: 726–34

    PubMed  CAS  Google Scholar 

  68. Remuzzi G, Vigano G, Gotti E, et al. Bindarit, a new potential therapeutic agent for lupus nephritis: a pilot study [abstract]. Lupus 1995; 4: 99

    Google Scholar 

  69. West SG, Johnson SC. Danazol for the treatment of refractory autoimmune thrombocytopenia in systemic lupus erythematosus. Ann Intern Med 1988; 108: 703–6

    PubMed  CAS  Google Scholar 

  70. Ahn YS, Harrington WJ, Mylvaganam R, et al. Danazol therapy for autoimmune hemolytic anemia. Ann Intern Med 1985; 102: 298–301

    PubMed  CAS  Google Scholar 

  71. Chan AC, Sack K. Danazol therapy in autoimmune hemolytic anemia associated with systemic lupus erythematosus. J Rheumatol 1991; 18: 280–2

    PubMed  CAS  Google Scholar 

  72. Van Vollenhoven RF, Engleman EG, McGuire JL. An open study of dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum 1994; 37: 1305–9

    PubMed  Google Scholar 

  73. Van Vollenhoven RF, Engleman EG, McGuire JL. Dehydroepiandrosterone in systemic lupus erythematosus: results of a double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheum 1995; 38: 1826–31

    PubMed  Google Scholar 

  74. Van Vollenhoven RF, Park JL, Genovese MC, et al. A double-blind, placebocontrolled, clinical trial of dehydroepiandrosterone in severe systemic lupus erythematosus. Lupus 1999; 8: 181–7

    PubMed  Google Scholar 

  75. McMurray R, Keisler D, Kanuckel K, et al. Prolactin influences autoimmune disease activity in the female B/W mouse. J Immunol 1992; 147: 3780–7

    Google Scholar 

  76. Blank M, Krause I, Buskila D, et al. Bromocriptine immunomodulation of experimental systemic lupus erythematosus and primary antiphospholipid syndrome via induction of nonspecific T suppressor cells. Cell Immunol 1995; 162: 114–22

    PubMed  CAS  Google Scholar 

  77. McMurray RW, Weidensaul D, Allen SH, et al. Efficacy of bromocriptine in an open label therapeutic trial for systemic lupus erythematosus. J Rheumatol 1995; 22: 2084–91

    PubMed  CAS  Google Scholar 

  78. Álvarez-Nemegyei J, Covarrubias-Cobos A, Escalante-Triay F, et al. Bromocriptine in systemic lupus erythematosus: a double blind, randomized placebo controlled study. Lupus 1998; 7: 414–9

    PubMed  Google Scholar 

  79. Walker SE. Treatment of systemic lupus erythematosus with bromocriptine. Lupus 2001; 10: 197–202

    PubMed  CAS  Google Scholar 

  80. Polderman MC, Huizinga TW, Le Cessie S, et al. UVA-1 cold light treatment of systemic lupus erythematosus: a double-blind, placebo controlled crossover trial. Ann Rheum Dis 2001; 60: 112–5

    PubMed  CAS  Google Scholar 

  81. Habersetzer R, Samtleben W, Blumenstein M, et al. Plasma exchange in systemic lupus erythematosus. Int J Artif Organs 1983; 6: 39–41

    PubMed  Google Scholar 

  82. Wei N, Klippel JH, Huston DP, et al. Steinberg AD, Decker JL. Randomized trial of plasma exchange in mild systemic lupus erythematosus. Lancet 1983; I: 17–21

    Google Scholar 

  83. French Collaborative Group. A randomized trial of plasma exchange in severe acute systemic lupus erythematosus: methodology and interim analysis. Transfus Technol 1985; 6: 535–9

    Google Scholar 

  84. Lewis EJ, Hunsicker LG, Lan SP, et al. A controlled trial of plasmapheresis therapy in severe lupus nephritis. The Lupus Nephritis Collaborative Study Group. N Engl J Med 1992; 326: 1373–9

    PubMed  CAS  Google Scholar 

  85. García-Consuegra J, Merino R, Alonso A, et al. Systemic lupus erythematous: a case report with unusual manifestations and favourable outcome after plasmapheresis. Eur J Pediatr 1992; 151: 581–2

    PubMed  Google Scholar 

  86. Euler HH, Schroeder JO, Harten P, et al. Treatment-free remission in severe systemic lupus erythematosus following synchronization of plasmapheresis with subsequent pulse cyclophosphamide. Arthritis Rheum 1994; 37: 1784–94

    PubMed  CAS  Google Scholar 

  87. Pohl MA, Lan SP, Berl T. Plasmapheresis does not increase the risk for infection in immunosuppressed patients with severe lupus nephritis. The Lupus Nephritis Collaborative Study Group. Ann Intern Med 1991; 114: 924–9

    PubMed  CAS  Google Scholar 

  88. Euler HH, Schwab UM, Schroeder JO, et al. The Lupus Plasmapheresis Study Group: tationale and updated interim report. Artif Organs 1996; 20: 356–9

    PubMed  CAS  Google Scholar 

  89. Wallace D, Goldfinger D, Pepkowitz S, et al. Randomized controlled trial of pulse/synchronization cyclophosphamide/apheresis for proliferative lupus nephritis. J Clin Apheresis 1998; 13: 163–6

    PubMed  CAS  Google Scholar 

  90. Lewis EJ. Plasmapheresis in collagen vascular diseases. Ther Apheresis 1999; 3: 172–7

    CAS  Google Scholar 

  91. Schiel R, Bambauer R. Therapeutic plasma exchange and cyclosporine in the treatment of systemic lupus erythematosus. Ther Apheresis 1999; 3: 234–9

    CAS  Google Scholar 

  92. Hidaka T, Suzuki K, Matsuki Y, et al. Evaluation of adsorption selectivity dextran sulfate bound cellulose beads for the removal af anti-DNA antibodies. Ther Apheresis 1999; 3: 75–80

    CAS  Google Scholar 

  93. Suzuki K, Kawagoe M, Hara M, et al. Clinical evaluation of immunoadsorption in patients with systemic lupus erythematosus using two dextran sulfate cellulose columns (SL-01, Selesorb) in an automated column regeneration unit. Prog Med 1991; 11: 3007–21

    Google Scholar 

  94. Kobayashi S, Tamura N, Mokuno C, et al. Immunoadsorbent plasmapheresis for a patient with antiphospholipid syndrome during pregnancy. Ann Rheum Dis 1992; 51: 399–401

    PubMed  CAS  Google Scholar 

  95. Neuwelt CM, Daikh DI, Linfoot JA, et al. Catastrophic antiphospholipid syndrome: response to repeated plasmapheresis over three years. Arthritis Rheum 1997; 40: 1534–9

    PubMed  CAS  Google Scholar 

  96. Suzuki K. The role of immunoadsorption using dextran-sulfate cellulose columns in the treatment of systemic lupus erythematosus. Ther Apheresis 2000; 4: 239–43

    CAS  Google Scholar 

  97. Stricker R, Davis JA, Gershow J, et al. Thrombotic thrombocytopenic purpura complicating systemic lupus erythematosus: case report and literature review from the plasmapheresis era. J Rheumatol 1992; 19: 1469–73

    PubMed  CAS  Google Scholar 

  98. Khamashta M, Cuadrado MJ, Mujic F. The management of thrombosis in the anti-phospholipid-antibody syndrome. N Engl J Med 1995; 332: 993–7

    PubMed  CAS  Google Scholar 

  99. Asherson RA, Cervera R, Piette FC, et al. The catastrophic anti-phospholipid syndrome. Medicine 1998; 77: 195–207

    PubMed  CAS  Google Scholar 

  100. Strand V. New therapies for systemic lupus erythematosus. Rheum Dis Clin North Am 2000; 26: 389–406

    PubMed  CAS  Google Scholar 

  101. Rauova L, Lukac J, Levy Y, et al. High-dose intravenous immunoglobulins for lupus nephritis: a salvage immunomodulation. Lupus 2001; 10: 209–13

    PubMed  CAS  Google Scholar 

  102. Shoenfeld Y, Krause I, Blank M. New methods of treatment in an experimental murine model of systemic lupus erythematosus induced by idiotypic manipulation. Ann Rheum Dis 1997; 56: 5–11

    PubMed  CAS  Google Scholar 

  103. Williams RC, Malone CC, Fry G, et al. Affinity columns containing anti-DNA Id+ human myeloma proteins adsorb human epibodies from intravenous gamma globulin. Arthritis Rheum 1997; 40: 683–93

    PubMed  CAS  Google Scholar 

  104. Prasad NKA, Papoff G, Zeuner A, et al. Therapeutic preparations of normal polyspecified IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the fas apoptopic pathway. J Immunol 1998; 161: 3781–90

    PubMed  CAS  Google Scholar 

  105. Shroider JO, Zeuner RA, Euler HH, et al. High dose intravenous immunoglobulins in systemic lupus erythematosus: clinical and serological results of a pilot study. J Rheumatol 1996; 23: 71–5

    Google Scholar 

  106. Strand V, Lee M. Intravenous immunoglobulin (IVIg) in the treatment of autoimmune diseases. In: Strand V, Scott DL, Simon LS, editors. Novel therapeutic agents for the treatment of autoimmune diseases. New York: Dekker, 1997: 256

    Google Scholar 

  107. Imbach P, Barandun S, D Apuzzo V, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1981; I(8232): 1228–31

    Google Scholar 

  108. Lin CY, Hsu HC, Chiang H. Improvement of histological and immunological change in steroid and immunosuppressive drug-resistant lupus nephritis by high-dose intravenous gamma globulin. Nephron 1989; 53: 303–10

    PubMed  CAS  Google Scholar 

  109. Boletis JN, Ioannidis JP, Boki KA, et al. Intravenous immunoglobulin compared with cyclophosphamide for proliferative lupus nephritis. Lancet 1999; 354: 569–70

    PubMed  CAS  Google Scholar 

  110. Levy Y, Sherer Y, George J, et al. Intravenous immunoglobulin treatment of lupus nephritis. Semin Arthritis Rheum 2000; 29: 321–7

    PubMed  CAS  Google Scholar 

  111. Sekul EA, Cupler EJ, Dalakas MC, et al. Aseptic meningitis associated with highdose intravenous immunoglobulin therapy: frequency and risk factors. Ann Intern Med 1994; 121: 259–62

    PubMed  CAS  Google Scholar 

  112. Barron KS, Sher MR, Silverman ED. Intravenous immunoglobulin therapy: magic or black magic. J Rheumatol 1992; 19Suppl. 33: 94–7

    Google Scholar 

  113. Silverman ED, Laxer RM, Greenwald M, et al. Intravenous gamma globulin therapy in systemic juvenile rheumatoid arthritis. Arthritis Rheum 1990; 33: 1015–22

    PubMed  CAS  Google Scholar 

  114. Grammer A, Bergman MC, Miura Y, et al. The CD40 ligand expressed by human B cells costimulates B cell responses. J Immunol 1995; 154: 4996–5010

    PubMed  CAS  Google Scholar 

  115. Davis JC, Totoritis MC, Rosenberg J, et al. Phase I clinical trial of a monoclonal antibody against CD40-ligand (IDEC-131) in patients with systemic lupus erythematosus. J Rheumatol 2001; 28: 95–101

    PubMed  CAS  Google Scholar 

  116. Spertini F, Leimgruber A, Morel B, et al. Idiotypic vaccination with a murine anti-dsDNA antibody: phase I study in patients with nonactive systemic lupus erythematosus with nephritis. J Rheumatol 1999; 26: 2602–8

    PubMed  CAS  Google Scholar 

  117. Jones DS, Barstad PA, Field MJ, et al. Immunospecific reduction of antioligonucleotide antibody-forming cells with a tetrakis-oligonucleotide conjugate (LJP 394), a therapeutic candidate for the treatment of lupus nephritis. J Med Chem 1995; 38: 2138–44

    PubMed  CAS  Google Scholar 

  118. Weisman MH, Blustein HG, Berner CM, et al. Reduction in circulating dsDNA antibody titer after administration of LJP-394. J Rheumatol 1997; 24: 314–8

    PubMed  CAS  Google Scholar 

  119. Furie RA, Cash JM, Cronin ME, et al. Treatment of systemic lupus erythematosus with LJP 394. J Rheumatol 2001; 28: 257–65

    PubMed  CAS  Google Scholar 

  120. Wallace DJ. Clinical and pharmacological experience with LJP-394. Expert Opin Investig Drugs 2001; 10: 111–7

    PubMed  CAS  Google Scholar 

  121. Park Y, Lee SK, Kim DS, et al. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 1998; 16: 283–8

    PubMed  CAS  Google Scholar 

  122. Llorente L, Richaud-Patin Y, García-Padilla C, et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 2000; 43: 1790–800

    PubMed  CAS  Google Scholar 

  123. Hebert LA, Birmingham DJ, Shen XP, et al. Effect of recombinant erythropoietin therapy on autoimmunity in systemic lupus erythematosus. Am J Kidney Dis 1994; 24: 25–32

    PubMed  CAS  Google Scholar 

  124. Tzioufas AG, Kokori SI, Petrovas CI, et al. Autoantibodies to human recombinant erythropoietin in patients with systemic lupus erythematosus. Arthritis Rheum 1997; 40: 2212–6

    PubMed  CAS  Google Scholar 

  125. Voulgarelis M, Kokori SIG, Ioannidis JPA, et al. Anaemia in systemic lupus erythematosus: aetiological profile and the role of erythropoietin. Ann Rheum Dis 2000; 59: 217–22

    PubMed  CAS  Google Scholar 

  126. Schett G, Firbas U, Fureder W, et al. Decreased serum erythropoietin and its relation to anti-erythropoietin antibodies in anaemia of systemic lupus erythematosus. Rheumatology 2001; 40: 424–31

    PubMed  CAS  Google Scholar 

  127. Bekkum DW. Stem cell transplantation in experimental models of autoimmune disease. J Clin Invest 2000; 20: 10–6

    Google Scholar 

  128. Marmont AM. Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998; 83: 733–43

    PubMed  CAS  Google Scholar 

  129. Jantunen E, Myllykangas-Luosujarvi R. Stem cell transplantation for treatment of severe autoimmune diseases: current status and future perspectives. Bone Marrow Transplant 2000; 25: 351–6

    PubMed  CAS  Google Scholar 

  130. Nash RA. Prospects of stem cell transplantation in autoimmune diseases. J Clin Immunol 2000; 20: 38–45

    PubMed  CAS  Google Scholar 

  131. Burt RK, Marmont A, Schroeder J, et al. Intense immune suppression for systemic lupus: the role of hematopoietic stem cells. J Clin Immunol 2000; 20: 31–6

    PubMed  CAS  Google Scholar 

  132. Traynor AE, Schroeder J, Rosa RM, et al. Treatment of severe systemic lupus erythematosus with high-dose chemotherapy and haemopoietic stem-cell transplantation: a phase I study. Lancet 2000; 356: 701–7

    PubMed  CAS  Google Scholar 

  133. Sullivan KM, Parkman R, Walters MC. Bone marrow transplantation for nonmalignant disease. Washington, DC. Hematology (American Society of Hematology Education Program Book) 2000: 319–38

    Google Scholar 

  134. Tyndall A. Immunoablation and haemopoietic stem cell transplantation for severe autoimmune disease with special reference to systemic lupus erythematosus. Lupus 2001; 10: 214–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Carreño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreño, L., López-Longo, F.J., González, C.M. et al. Treatment Options for Juvenile-Onset Systemic Lupus Erythematosus. Pediatr-Drugs 4, 241–256 (2002). https://doi.org/10.2165/00128072-200204040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200204040-00004

Keywords

Navigation