American Journal of Clinical Dermatology

, Volume 6, Issue 6, pp 349–355 | Cite as

Oral Contraceptives and Skin Cancer

Is There a Link?
  • Kimberly K. Leslie
  • Eve Espey
Current Opinion


The skin expresses estrogen, progesterone, and androgen receptors. In the presence of steroid hormones, such as those contained in oral contraceptives, the skin likely responds to hormonal signals that control the cell cycle, apoptosis, DNA replication, and other cellular functions. Some estrogen-responsive pathways have the potential to promote tumor development, including the augmentation of epidermal growth factor signaling, the expression of proto-oncogenes, and inhibition of apoptosis. The question of whether oral contraceptives increase the risk for the development of skin cancer, particularly melanoma, is still an area of concern. This paper reviews the available evidence, the bulk of which suggests that while the skin responds to estrogens, progestins, and androgens, these responses do not significantly increase the risk of developing skin cancer when estrogen exposure is not excessive.


Melanoma Estrogen Oral Contraceptive Skin Cancer Progestin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Preparation of this article was funded by the Cory Beach Family Fund (KL) and the US National Institutes of Health 1R01CA99908-01 (KL). The authors have no conflicts of interest relevant to this article.


  1. 1.
    Jensen EV, DeSombre ER. Estrogen-receptor interaction. Science. 1973; 182 (108): 126–34PubMedCrossRefGoogle Scholar
  2. 2.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988; 240 (4854): 889–95PubMedCrossRefGoogle Scholar
  3. 3.
    Onate SA, Tsai SY, Tsai MJ, et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995; 270 (5240): 1354–7PubMedCrossRefGoogle Scholar
  4. 4.
    Carroll JS, Swarbrick A, Musgrove EA, et al. Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: implications for the antiproliferative effects of antiestrogens. Cancer Res 2002; 62 (11): 3126–31PubMedGoogle Scholar
  5. 5.
    Webb P, Nguyen P, Valentine C, et al. The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol. 1999; 13 (10): 1672–85PubMedCrossRefGoogle Scholar
  6. 6.
    Kushner PJ, Agard DA, Greene GL, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mot Biol. 2000; 74 (5): 311–7CrossRefGoogle Scholar
  7. 7.
    Kushner PJ, Agard D, Feng WJ, et al. Oestrogen receptor function at classical and alternative response elements. Novartis Found Symp. 2000; 230: 20–6PubMedCrossRefGoogle Scholar
  8. 8.
    Horwitz KB, Alexander PS. In situ photolinked nuclear progesterone receptors of human breast cancer cells: subunit molecular weights after transformation and translocation. Endocrinology. 1983; 113 (6: 2195–201PubMedCrossRefGoogle Scholar
  9. 9.
    Lessey BA, Alexander PS, Horwitz KB. The subunit structure of human breast cancer progesterone receptors: characterization by chromatography and photoaffinity labeling. Endocrinology. 1983; 112 (4): 1267–74PubMedCrossRefGoogle Scholar
  10. 10.
    Arnett-Mansfield RL, deFazio A, Wain GV, et al. Relative expression of progesterone receptors A and B in endometrioid cancers of the endometrium. Cancer Res. 2001; 61 (11): 4576–82PubMedGoogle Scholar
  11. 11.
    Hanekamp EE, Kuhne EC, Smid-Koopman E, et al. Loss of progesterone receptor may lead to an invasive phenotype in human endometrial cancer. Fur J Cancer. 2002; 38 Suppl. 6: S71–2Google Scholar
  12. 12.
    Gregory CW, He B, Wilson EM. The putative androgen receptor-A form results from in vitro proteolysis. J Mol Endocrinol. 2001; 27 (3): 309–19PubMedCrossRefGoogle Scholar
  13. 13.
    Tilley WD, Marcelli M, Wilson JD, et al. Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci U S A. 1989; 86 (1): 327–31PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson CM, McPhaul MI. A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci U S A. 1994; 91 (4): 1234–8PubMedCrossRefGoogle Scholar
  15. 15.
    Catalano MG, Pfeffer U, Raineri M, et al. Altered expression of androgen-receptor isoforms in human colon-cancer tissues. Int J Cancer. 2000; 86 (3): 325–30PubMedCrossRefGoogle Scholar
  16. 16.
    Ho KJ, Liao JK. Nonnuclear actions of estrogen. Arterioscler Thromb Vase Biol. 2002; 22 (12): 1952–61CrossRefGoogle Scholar
  17. 17.
    McCann JP, Mayes JS, Hendricks GR, et al. Subcellular distribution and glycosylation pattern of androgen receptor from sheep omental adipose tissue. J Endocrinol; 2001; 169 (3): 587–93PubMedCrossRefGoogle Scholar
  18. 18.
    Harvey BJ, Doolan CM, Condliffe SB, et al. Non-genomic convergent and divergent signaling of rapid responses to aldosterone and estradiol in mammalian colon. Steroids. 2002; 67 (6): 483–91PubMedCrossRefGoogle Scholar
  19. 19.
    Singleton DW, Feng Y, Burd CJ, et al. Nongenomic activity and subsequent c-fos induction by estrogen receptor ligands are not sufficient to promote deoxyribonucleic acid synthesis in human endometrial adenocarcinoma cells. Endocrinology. 2003; 144 (1): 121–8PubMedCrossRefGoogle Scholar
  20. 20.
    Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002; 80 (2): 231–8PubMedCrossRefGoogle Scholar
  21. 21.
    Filardo EJ, Quinn JA, Frackelton AR, et al. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and CAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol. 2002; 16 (1): 70–84PubMedCrossRefGoogle Scholar
  22. 22.
    Ahola TM, Alkio N, Manninen T, et al. Progestin and G protein-coupled receptor 30 inhibit mitogen-activated protein kinase activity in MCF-7 breast cancer cells. Endocrinology. 2002; 143 (12): 4620–6PubMedCrossRefGoogle Scholar
  23. 23.
    Ahola TM, Manninen T, Alkio N, et al. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology. 2002; 143 (9): 3376–84PubMedCrossRefGoogle Scholar
  24. 24.
    Ahola TM, Purmonen S, Pennanen P, et al. Progestin upregulates G-protein-coupled receptor 30 in breast cancer cells. Eur J Biochem. 2002; 269 (10): 2485–90PubMedCrossRefGoogle Scholar
  25. 25.
    Fraser D, Padwick ML, Whitehead M, et al. Presence of an oestradiol receptor-related protein in the skin: changes during the normal menstrual cycle. Br J Obstet Gynaecol. 1991; 98 (12): 1277–82PubMedCrossRefGoogle Scholar
  26. 26.
    Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab. 2000; 85 (12): 4835–40PubMedCrossRefGoogle Scholar
  27. 27.
    Sun J, Baudry J, Katzenellenbogen JA, et al. Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol Endocrinol. 2003; 17 (2): 247–58PubMedCrossRefGoogle Scholar
  28. 28.
    Sun J, Huang YR, Harrington WR, et al. Antagonists selective for estrogen receptor alpha. Endocrinology. 2002; 143 (3): 941–7PubMedCrossRefGoogle Scholar
  29. 29.
    Shiau AK, Barstad D, Radek IT, et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol. 2002; 9 (5): 359–64PubMedGoogle Scholar
  30. 30.
    Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. Characterization of the biological roles of the estrogen receptors, ERα and ERβ, in estrogen target tissues in vivo through the use of an ERa-selective ligand. Endocrinology. 2002; 143 (11): 4172–7PubMedCrossRefGoogle Scholar
  31. 31.
    Rickard DJ, Waters KM, Ruesink TJ, et al. Estrogen receptor isoform-specific induction of progesterone receptors in human osteoblasts. J Bone Miner Res. 2002; 17 (4): 580–92PubMedCrossRefGoogle Scholar
  32. 32.
    Lindberg MK, Moverare S, Skrtic S, et al. Estrogen receptor (ER)-β reduces ERα-regulated gene transcription, supporting a ‘ying yang’ relationship between ERα and ERβ in mice. Mol Endocrinol. 2003; 17 (2): 203–8PubMedCrossRefGoogle Scholar
  33. 33.
    Moverare S, Lindberg MK, Faergemann J, et al. Estrogen receptor-α, but not estrogen receptor-β, is involved in the regulation of the hair follicle cycling as well as the thickness of epidermis in male mice. J Invest Dermatol. 2002; 119 (5): 1053–8PubMedCrossRefGoogle Scholar
  34. 34.
    Avila DM, Wilson CM, Nandi N, et al. Immunoreactive AR and genetic alterations in subjects with androgen resistance and undetectable AR levels in genital skin fibroblast ligand-binding assays. J Clin Endocrinol Metab. 2002; 87 (1): 182–8PubMedCrossRefGoogle Scholar
  35. 35.
    Alesci S, Bornstein SR. Neuroimmunoregulation of androgens in the adrenal gland and the skin. Horm Res. 2000; 54 (5-6): 281–6PubMedCrossRefGoogle Scholar
  36. 36.
    Labrie F, Luu-The V, Labrie C, et al. Intracrinology and the skin. Horm Res. 2000; 54 (5-6): 218–29PubMedCrossRefGoogle Scholar
  37. 37.
    Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001; 45 (3 Suppl.): S116–24PubMedCrossRefGoogle Scholar
  38. 38.
    Izu K, Yamamoto O, Yamaguchi J, et al. A case of autoimmune progesterone dermatitis [in German]. J Uoeh. 2001; 23 (4): 431–6PubMedGoogle Scholar
  39. 39.
    Uotinen N, Puustinen R, Pasanen S, et al. Distribution of progesterone receptor in female mouse tissues. Gen Comp Endocrinol. 1999; 115 (3): 429–41PubMedCrossRefGoogle Scholar
  40. 40.
    Kommoss F, Kiechle-Schwarz M, Dubois A, et al. Co-cultivation of ovarian carcinoma cells with dermal fibroblasts induces fibroblast expression of sex steroid receptor transcripts and protein. Int J Gynecol Cancer. 1995; 5 (2): 101–6PubMedCrossRefGoogle Scholar
  41. 41.
    Im S, Lee ES, Kim W, et al. Expression of progesterone receptor in human keratinocytes. J Korean Med Sci. 2000; 15 (6: 647–54PubMedGoogle Scholar
  42. 42.
    Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002; 288 (3): 321–33PubMedCrossRefGoogle Scholar
  43. 43.
    Brekelmans CT. Risk factors and risk reduction of breast and ovarian cancer. Curr Opin Obstet Gynecol. 2003; 15 (1): 63–8PubMedCrossRefGoogle Scholar
  44. 44.
    Matsumum Y, Ananthaswamy HN. Molecular mechanisms of photocarcinogenesis. Front Biosci. 2002; 7: d765–83CrossRefGoogle Scholar
  45. 45.
    Nataraj AJ, Trent JC, Ananthaswamy HN. p53 gene mutations and photocarcinogenesis. Photochem Photobiol. 1995; 62 (2): 218–30PubMedCrossRefGoogle Scholar
  46. 46.
    Nishigori C, Yarosh DB, Donawho C, et al. The immune system in ultraviolet carcinogenesis. J Investig Dermatol Symp Proc. 1996; 1 (2): 143–6PubMedGoogle Scholar
  47. 47.
    van Steeg H, Kraemer KH. Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Mol Med Today. 1999; 5 (2): 86–94PubMedCrossRefGoogle Scholar
  48. 48.
    McGregor JM, Yu CC, Dublin EA, et al. Aberrant expression of p53 tumour-suppressor protein in non-melanoma skin cancer. Br J Dermatol. 1992; 127 (5): 463–9PubMedCrossRefGoogle Scholar
  49. 49.
    Shea CR, McNutt NS, Volkenandt M, et al. Overexpression of p53 protein in basal cell carcinomas of human skin. Am J Pathol. 1992; 141 (1): 25–9PubMedGoogle Scholar
  50. 50.
    Stephenson TJ, Royds J, Silcocks PB, et al. Mutant p53 oncogene expression in keratoacanthoma and squamous cell carcinoma. Br J Dermatol. 1992; 127 (6): 566–70PubMedCrossRefGoogle Scholar
  51. 51.
    Kimonis VE, Goldstein AM, Pastakia B, et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet. 1997; 69 (3): 299–308PubMedCrossRefGoogle Scholar
  52. 52.
    Pierceall WE, Goldberg LH, Tainsky MA, et al. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol Carcinog. 1991; 4 (3): 196–202PubMedCrossRefGoogle Scholar
  53. 53.
    Pierceall WE, Mukhopadhyay T, Goldberg LH, et al. Mutations in the p53 tumor suppressor gene in human cutaneous squamous cell carcinomas. Mol Carcinog. 1991; 4 (6): 445–9PubMedCrossRefGoogle Scholar
  54. 54.
    Dai D, Litman ES, Schonteich E, et al. Progesterone regulation of activating protein-1 transcriptional activity: a possible mechanism of progesterone inhibition of endometrial cancer cell growth. J Steroid Biochem Mol Biol. 2003; 87 (2-3): 123–31PubMedCrossRefGoogle Scholar
  55. 55.
    Dai D, Wolf DM, Litman ES, et al. Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. Cancer Res. 2002; 62 (3): 881–6PubMedGoogle Scholar
  56. 56.
    Rogers GS, Flowers JL, Pollack SV, et al. Determination of sex steroid receptor in human basal cell carcinoma. J Am Acad Dermatol. 1988; 18 (5 Pt 1): 1039–43PubMedCrossRefGoogle Scholar
  57. 57.
    Gefeller O, Hassan K, Wille L. Cutaneous malignant melanoma in women and the role of oral contraceptives. Br J Dermatol. 1998; 138 (1): 122–4PubMedCrossRefGoogle Scholar
  58. 58.
    Miller JG, Gee J, Price A, et al. Investigation of oestrogen receptors, sex steroids and soluble adhesion molecules in the progression of malignant melanoma. Melanoma Res. 1997; 7 (3): 197–208PubMedCrossRefGoogle Scholar
  59. 59.
    Ladanyi A, Timar J, Bocsi J, et al. Sex-dependent liver metastasis of human melanoma lines in SCID mice. Melanoma Res. 1995; 5 (2): 83–6PubMedCrossRefGoogle Scholar
  60. 60.
    Kanda N, Watanabe S. 17beta-estradiol, progesterone, and dihydrotestosterone suppress the growth of human melanoma by inhibiting interleukin-8 production. J Invest Dermatol. 2001; 117 (2): 274–83PubMedCrossRefGoogle Scholar
  61. 61.
    Richardson B, Price A, Wagner M, et al. Investigation of female survival benefit in metastatic melanoma. Br J Cancer. 1999; 80 (12): 2025–33PubMedCrossRefGoogle Scholar
  62. 62.
    Beral V, Ramcharan S, Faris R. Malignant melanoma and oral contraceptive use among women in California. Br J Cancer. 1977; 36 (6): 804–9PubMedCrossRefGoogle Scholar
  63. 63.
    Pfahlberg A, Hassan K, Wille L, et al. Systematic review of case-control studies: oral contraceptives show no effect on melanoma risk. Public Health Rev. 1997; 25 (3-4): 309–15PubMedGoogle Scholar
  64. 64.
    Karagas MR, Stukel TA, Dykes J, et al. A pooled analysis of 10 case-control studies of melanoma and oral contraceptive use. Br J Cancer. 2002; 86 (7): 1085–92PubMedCrossRefGoogle Scholar
  65. 65.
    Feskanich D, Hunter DJ, Willett WC, et al. Oral contraceptive use and risk of melanoma in premenopausal women. Br J Cancer. 1999; 81 (5): 918–23PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Division of Maternal-Fetal Medicine, The Department of Obstetrics and GynecologyUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA
  2. 2.Sciences CenterAlbuquerqueUSA

Personalised recommendations