Skip to main content
Log in

Discovery and Development of the Epothilones

A Novel Class of Antineoplastic Drugs

  • Review Article
  • Published:
Drugs in R&D Aims and scope Submit manuscript

Abstract

The epothilones are a novel class of antineoplastic agents possessing antitubulin activity. The compounds were originally identified as secondary metabolites produced by the soil-dwelling myxobacterium Sorangium cellulosum. Two major compounds, epothilone A and epothilone B, were purified from the S. cellulosum strain So ce90 and their structures were identified as 16-member macrolides. Initial screening with these compounds revealed a very narrow and selective antifungal activity against the zygomycete, Mucor hiemalis. In addition, strong cytotoxic activity against eukaryotic cells, mouse L929 fibroblasts and human T-24 bladder carcinoma cells was observed. Subsequent studies revealed that epothilones induce tubulin polymerization and enhance microtubule stability. Epothilone-induced stabilisation of microtubules was shown to cause arrest at the G2/M transition of the cell cycle and apoptosis. The compounds are active against cancer cells that have developed resistance to taxanes as a result of acquisition of β-tubulin overexpression or mutations and against multidrug-resistant cells that overexpress P-glycoprotein or multidrug resistance-associated protein. Thus, epothilones represent a new class of antimicrotubule agents with low susceptibility to key tumour resistance mechanisms.

More recently, a range of synthetic and semisynthetic epothilone analogues have been produced to further improve the adverse effect profile (or therapeutic window) and to maximize pharmacokinetic and antitumour properties. Various epothilone analogues have demonstrated activity against many tumour types in preclinical studies and several compounds have been and still are being evaluated in clinical trials. This article reviews the identification and early molecular characterization of the epothilones, which has provided insight into the mode of action of these novel antitumour agents in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Table II
Fig. 5
Table III

Similar content being viewed by others

References

  1. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005; 205 (2): 275–92

    CAS  PubMed  Google Scholar 

  2. Moscow J, Morrow CS, Cowan KH. Drug resistance and its clinical circumvention. In: Holland JF, Frei III E, editors. Cancer medicine. Toronto: BC Decker, 2003

    Google Scholar 

  3. Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer 2003; 10 (1): 43–73

    CAS  PubMed  Google Scholar 

  4. Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 1989; 58: 137–71

    CAS  PubMed  Google Scholar 

  5. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427

    CAS  PubMed  Google Scholar 

  6. Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 2005; 14 Suppl. 1: 35–48

    PubMed  Google Scholar 

  7. Lavelle F. What’s new about new tubulin/microtubule-binding agents? Exp Opin Invest Drugs 1995; 4 (8): 771–5

    CAS  Google Scholar 

  8. Reichenbach H. Order VIII Myxococcales Tchan, Pochon and Prévot. 1948, 398AL. In: Brenner DJ, Krieg NR, Stanley JT, et al., editors. Bergey’s manual of systematic bacteriology, 2nd ed. Vol. 2, Part C. New York (NY): Springer, 2005: 1059–144

    Google Scholar 

  9. Dworkin M. Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 1996; 60 (1): 70–102

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Höfle G, Reichenbach H. Biosynthetic potential of the myxobacteria. In: Kuhn W, Fiedler H, editors. Sekundärmetabolismus bei Mikroorganismen. Tübingen: Attempto Verlag, 1995: 61–78

    Google Scholar 

  11. Reichenbach H, Höfle G. Myxobacteria as producers of secondary metabolites. In: Grabley S, Thierecke R, editors. Drug discovery from nature. Berlin: Springer, 1999: 79

    Google Scholar 

  12. Reichenbach H, Höfle G. Biologically active secondary metabolites from myxobacteria. Biotechnol Adv 1993; 11 (2): 219–77

    CAS  PubMed  Google Scholar 

  13. Gerth K, Bedorf N, Höfle G, et al. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria): production, physico-chemical and biological properties. J Antibiot (Tokyo) 1996; 49 (6): 560–3

    CAS  Google Scholar 

  14. Höfle G, Bedorf N. German Patent No. DE413 8042, 1993

    Google Scholar 

  15. Niggemann J, Bedorf N, Flörke U, et al. Spirangien A and B, highly cytotoxic and antifungal spiroketals from the myxobacterium Sorangium cellulosum: isolation, structure elucidation and chemical modifications. Eur J Org Chem 2005; 23: 5013–8

    Google Scholar 

  16. Höfle G, Bedorf N, Steinmetz H, et al. Epothilone A and B: novel 16-membered macrolides with cytotoxic activity. Isolation, crystal structure, and conformation in solution. Angew Chem Int Ed Engl 1996; 35 (13/14): 1567–9

    Google Scholar 

  17. Gerth K, Steinmetz H, Höfle G, et al. Studies on the biosynthesis of epothilones: the PKS and epothilone C/D monooxygenase. J Antibiot (Tokyo) 2001; 54 (2): 144–8

    CAS  Google Scholar 

  18. Gerth K, Steinmetz H, Höfle G, et al. Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton. J Antibiot (Tokyo) 2000; 53 (12): 1373–7

    CAS  Google Scholar 

  19. Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995; 55 (11): 2325–33

    CAS  PubMed  Google Scholar 

  20. Buey RM, Diaz JF, Andreu JM, et al. Interaction of epothilone analogs with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chem Biol 2004; 11 (2): 225–36

    CAS  PubMed  Google Scholar 

  21. Heinz DW, Schubert WD, Höfle G. Much anticipated: the bioactive conformation of epothilone and its binding to tubulin. Angew Chem Int Ed Engl 2005; 44 (9): 1298–301

    CAS  PubMed  Google Scholar 

  22. Bode CJ, Gupta Jr ML, Reiff EA, et al. Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules. Biochemistry 2002; 41 (12): 3870–4

    CAS  PubMed  Google Scholar 

  23. Wartmann M, Altmann KH. The biology and medicinal chemistry of epothilones. Curr Med Chem Anti-Canc Agents 2002; 2 (1): 123–48

    Google Scholar 

  24. Owellen RJ, Hartke CA, Dickerson RM, et al. Inhibition of tubulin-microtubule polymerization by drugs of the vinca alkaloid class. Cancer Res 1976; 36 (4): 1499–502

    CAS  PubMed  Google Scholar 

  25. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 1980; 77 (3): 1561–5

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Arnal I, Wade RH. How does taxol stabilize microtubules? Curr Biol 1995; 5 (8): 900–8

    CAS  PubMed  Google Scholar 

  27. Gupta Jr ML, Bode CJ, Georg GI, et al. Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc Natl Acad Sci USA 2003; 100 (11): 6394–7

    CAS  PubMed  Google Scholar 

  28. Oakley BR. An abundance of tubulins. Trends Cell Biol 2000; 10 (12): 537–42

    CAS  PubMed  Google Scholar 

  29. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117

    CAS  PubMed  Google Scholar 

  30. Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000; 407: 41–7

    CAS  PubMed  Google Scholar 

  31. Lee FY, Borzilleri R, Fairchild CR, et al. BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 2001; 7 (5): 1429–37

    CAS  PubMed  Google Scholar 

  32. Kowalski RJ, Giannakakou P, Hamel E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol®). J Biol Chem 1997; 272 (4): 2534–41

    CAS  PubMed  Google Scholar 

  33. Kamath K, Jordan MA. Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 2003; 63 (18): 6026–31

    CAS  PubMed  Google Scholar 

  34. Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 2003; 10 (7): 597–607

    CAS  PubMed  Google Scholar 

  35. Yamaguchi H, Chen J, Bhalla K, et al. Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways. J Biol Chem 2004; 279 (38): 39431–7

    CAS  PubMed  Google Scholar 

  36. Bhalla KN. Microtubule-targeted anticancer agents and apoptosis. Oncogene 2003; 22: 9075–86

    CAS  PubMed  Google Scholar 

  37. Verrills NM, Kavallaris M. Improving the targeting of tubulin-binding agents: lessons from drug resistance studies. Curr Pharm Des 2005; 11 (13): 1719–33

    CAS  PubMed  Google Scholar 

  38. Kamath K, Wilson L, Cabral F, et al. BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 2005; 280 (13): 12902–7

    CAS  PubMed  Google Scholar 

  39. Paradiso A, Mangia A, Chiriatti A, et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Ann Oncol 2005; 16 (4 Suppl.): iv14–9

    PubMed  Google Scholar 

  40. Seve P, Mackey J, Isaac S, et al. Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 2005; 4 (12): 2001–7

    CAS  PubMed  Google Scholar 

  41. Ofir R, Seidman R, Rabinski T, et al. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ 2002; 9: 636–42

    CAS  PubMed  Google Scholar 

  42. Ahn HJ, Kim YS, Kim JU, et al. Mechanism of taxol-induced apoptosis in human SKOV3 ovarian carcinoma cells. J Cell Biochem 2004; 91: 1043–52

    CAS  PubMed  Google Scholar 

  43. Griffin D, Wittmann S, Guo F, et al. Molecular determinants of epothilone B derivative (BMS 247550) and Apo-2L/TRAIL-induced apoptosis of human ovarian cancer cells. Gynecol Oncol 2003 Apr; 89 (1): 37–47

    CAS  PubMed  Google Scholar 

  44. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic over-expression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 2002 May 1; 99 (9): 3419–26

    CAS  PubMed  Google Scholar 

  45. Uyar D, Takigawa N, Mekhail T, et al. Apoptotic pathways of epothilone BMS 310705. Gynecol Oncol 2003; 91: 173–8

    CAS  PubMed  Google Scholar 

  46. Wu KD, Cho YS, Katz J, et al. Investigation of antitumor effects of synthetic epothilone analogs in human myeloma models in vitro and in vivo. Proc Natl Acad Sci USA. 2005 Jul 26; 102 (30): 10640–5

    CAS  PubMed  Google Scholar 

  47. Wartmann M, Koppler J, Lartigot M. Epothilones A and B accumulate several-hundred fold inside cells [abstract 1362]. Proc Am Assoc Cancer Res 2000; 41: 213

    Google Scholar 

  48. Altmann KH. Epothilone B and its analogs: a new family of anticancer agents. Mini Rev Med Chem 2003; 3 (2): 149–58

    CAS  PubMed  Google Scholar 

  49. Su DS, Balog A, Meng D, et al. Structure-activity relationship of the epothilones and the first in vivo comparison with paclitaxel. Angew Chem Int Ed Engl 1997; 36 (19): 2093–6

    CAS  Google Scholar 

  50. Chou TC, Zhang XG, Balog A, et al. Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci U S A 1998; 95 (16): 9642–7

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rothermel J, Wartmann M, Chen T, et al. EPO906 (epothilone B): a promising novel microtubule stabilizer. Semin Oncol 2003; 30 (3 Suppl. 6): 51–5

    CAS  PubMed  Google Scholar 

  52. Altmann KH, Wartmann M, O’Reilly T. Epothilones and related structures: a new class of microtubule inhibitors with potent in vivo antitumor activity. Biochim Biophys Acta 2000; 1470 (3): M79–91

    CAS  PubMed  Google Scholar 

  53. Altmann KH. The chemistry and biology of epothilones: lead structures for the discovery of improved microtubule inhibitors. In: Liang XT, Fang WS, editors. Medicinal chemistry of bioactive natural products. Hoboken (NJ): Wiley, 2006: 1–34

    Google Scholar 

  54. Jordan MA, Miller H, Ni L, et al. The Pat-21 breast cancer model derived from a patient with primary Taxol® resistance recapitulates the phenotype of its origin, has altered β-tubulin expression and is sensitive to ixabepilone [abstract]. Proc Amer Assoc Cancer Res 2006; 47: LB–280

    Google Scholar 

  55. Nicolaou KC, Sasmal PK, Rassias G, et al. Design, synthesis, and biological properties of highly potent epothilone B analogues. Angew Chem Int Ed Engl 2003; 42 (30): 3515–20

    CAS  PubMed  Google Scholar 

  56. Blum W, Aichholz R, Ramstein P, et al. In vivo metabolism of epothilone B in tumor-bearing nude mice: identification of three new epothilone B metabolites by capillary high-pressure liquid chromatography/mass spectrometry/tandem mass spectrometry. Rapid Commun Mass Spectrom 2001; 15 (1): 41–9

    CAS  PubMed  Google Scholar 

  57. Chou TC, O’Connor OA, Tong WP, et al. The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc Natl Acad Sci U S A 2001; 98 (14): 8113–8

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Altmann KA, Bold G, Caravatti G, et al. Epothilones and their analogs: potential new weapons in the fight against cancer. Chimia 2000; 54: 612–21

    CAS  Google Scholar 

  59. Höfle G, Reichenbach H. Epothilone, a myxobacterial metabolite with promising antitumor activity. In: Cragg G, Kingston D, Newman D, editors. Anticancer agents from natural products. Boca Raton (FL): Taylor & Francis Group, 2005: 413–450

    Google Scholar 

  60. Vite G, Höfle G, Bifano M. The semisynthesis and preclinical evaluation of BMS-310705, an epothilone analog in clinical development [abstract]. 223rd Am Chem Soc Meeting; 2002; MEDI 18

    Google Scholar 

  61. Kolman A. BMS-310705 Bristol Myers Squibb/GBF. Curr Opin Invest Drugs 2004 Dec; 5 (12): 1292–7

    CAS  Google Scholar 

  62. Zhou Y, Zhong Z, Liu F. KOS-1584: a rationally designed epothilone D analog with improved potency and pharmacokinetic (PK) properties [abstract]. Proc Amer Assoc Cancer Res 2005; 46: 2535

    Google Scholar 

  63. Klar U, Buchmann B, Schwede W, et al. Total synthesis and antitumor activity of ZK-EPO: the first fully synthetic epothilone in clinical development. Angew Chem Int Ed Engl 2006; 45 (47): 7942–8

    Google Scholar 

  64. Chou TC, Dong H, Zhang X, et al. Therapeutic cure against human tumor xenografts in nude mice by a microtubule stabilization agent, fludelone, via parenteral or oral route. Cancer Res 2005; 65 (20): 9445–54

    CAS  PubMed  Google Scholar 

  65. Dilea C, Wartmann M, Maira SM. A PK-PD dose optimization strategy for the microtubule stabilizing agent ABJ879 [abstract]. Proc Amer Assoc Cancer Res 2004; 45: 5132

    Google Scholar 

  66. Wartmann M, Loretan J, Reuter R. Preclinical pharmacological profile of ABJ879, a novel epothilone B analog with potent and protracted anti-tumor activity [abstract]. Proc Amer Assoc Cancer Res 2004; 45: 5440

    Google Scholar 

  67. Wu KD, Cho YS, Katz J, et al. Investigation of antitumor effects of synthetic epothilone analogs in human myeloma models in vitro and in vivo. Proc Natl Acad Sci U S A 2005; 102 (30): 10640–5

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Goodin S, Kane MP, Rubin EH. Epothilones: mechanism of action and biologic activity. J Clin Oncol 2004 May 15; 22 (10): 2015–25

    CAS  PubMed  Google Scholar 

  69. Spriggs DR, Dupont J, Pezzulli S, et al. KOS-862 (epothilone D): phase 1 dose escalating and pharmacokinetic (PK) study in patients (pts) with advanced malignancies [abstract]. ECCO 2003; 12: 547

    Google Scholar 

  70. Kuppens IELM. Current state of the art of new tubulin inhibitors in the clinic. Curr Clin Pharm 2006; 1: 57–70

    CAS  Google Scholar 

  71. Cortes J, Baselga J. Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist 2007 Mar; 12 (3): 271–80

    CAS  PubMed  Google Scholar 

  72. Larkin JM, Kaye SB. Epothilones in the treatment of cancer. Expert Opin Investig Drugs 2006 Jun; 15 (6): 691–702

    CAS  PubMed  Google Scholar 

  73. Lee JJ, Swain SM. Development of novel chemotherapeutic agents to evade the mechanisms of multidrug resistance (MDR). Semin Oncol 2005 Dec; 32 (6 Suppl. 7): S22–6

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research work related to this manuscript was supported by the Helmholtz Centre for Infection Research. The authors gratefully acknowledge the editorial assistance of Roy Garcia, PhD in the preparation of this article and thank Bristol-Myers Squibb for their support in providing access to information on ixabepilone. The authors are consultants for Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Reichenbach.

Additional information

Formerly Gesellschaft für Biotechnologische Forschung (GBF) [Department of Natural Products].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichenbach, H., Höfle, G. Discovery and Development of the Epothilones. Drugs R D 9, 1–10 (2008). https://doi.org/10.2165/00126839-200809010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200809010-00001

Keywords

Navigation