Drugs in R & D

, Volume 1, Issue 3, pp 195–201 | Cite as

Promising New Agents in Osteoporosis

  • Jean-Yves Reginster
  • Yves Henrotin
  • Christiane Gosset
Leading Article Section 1: Osteoporosis


Currently marketed inhibitors of bone resorption or stimulators of bone formation have significantly contributed to a better preventive and therapeutic approach to postmenopausal and senile osteoporosis. However, none of the available compounds has unequivocally demonstrated an ability to fully prevent the occurrence of new vertebral or peripheral osteoporotic fractures once the disease is established. Therefore, several new medications are being developed, with the aim of providing a better risk-benefit profile and/or a more favourable cost-utility assessment than available drugs.

Potential inhibitors of bone resorption include specific inhibitors of the osteoclast’s proton pump, inhibitors of prostaglandins or nitric oxide donors. Stimulators of osteoblastic activity and subsequent bone formation might be obtained by strontium salts, peptides of the parathyroid hormone family, growth hormone and insulin-like growth factors or bone morphogenetic proteins. Most of these compounds are now undergoing phase II/III development programmes, and results evaluating their potential benefit should be available within 1 to 5 years.


Bone Mineral Density Osteoporosis Growth Hormone Adis International Limited Alendronate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reginster JY. Osteoporose postménopausique: traitement prophylactique. Paris: Masson, 1993Google Scholar
  2. 2.
    Kaufman JM, Devogelaer JP, Raeman F, et al. Prevention and treatment of postmenopausal osteoporosis: national consensus of the Belgian Bone Club. Clin Rheumatol 1997; 16: 343–5PubMedCrossRefGoogle Scholar
  3. 3.
    Meunier PJ, Slosman D, Delmas PD, et al. The strontium salt S-12911: a new candidate for the treatment of osteoporosis. Osteoporos Int 1996; 6 Suppl.: S241CrossRefGoogle Scholar
  4. 4.
    Christiansen C, Lindsay R. Estrogens, bone loss and preservation. Osteoporos Int 1991; 1: 714Google Scholar
  5. 5.
    Reginster JY, Denis D, Albert A, et al. 1-year controlled randomised trial of prevention of early postmenopausal bone loss by intranasal calcitonin. Lancet 1987; II: 1481–3CrossRefGoogle Scholar
  6. 6.
    Reginster JY, Jupsin I, Deroisy R, et al. Prevention of postmenopausal bone loss by rectal calcitonin. Calcif Tissue Int 1995; 56: 539–42PubMedCrossRefGoogle Scholar
  7. 7.
    Hosking DJ, McClung MR, Ravn P, et al. Alendronate in the prevention of osteoporosis: EPIC study two-year results. J Bone Miner Res 1996; 11 Suppl. 1: 133Google Scholar
  8. 8.
    Mortensen L, Bekker P, Ouweland FVD, et al. Prevention of early postmenopausal bone loss by risedronate: a two-year study. J Bone Miner Res 1995; 10 Suppl. 1: 140Google Scholar
  9. 9.
    Reginster JY, Lecart MP, Deroisy R, et al. Prevention of postmenopausal bone loss by tiludronate. Lancet 1989; II: 1469–71CrossRefGoogle Scholar
  10. 10.
    Reginster JY, Deroisy R, Lecart MP, et al. Prévention de l’ostéoporose à Liège: le PIGEPS dix ans plus tard. Sante Publique 1996; 2: 139–50Google Scholar
  11. 11.
    Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996; 348: 1535–41PubMedCrossRefGoogle Scholar
  12. 12.
    Jensen GF, Christiansen C, Transbol I. Fracture frequency and bone preservation in postmenopausal women treated with estrogen. Obstet Gynecol 1982; 60: 493–6PubMedGoogle Scholar
  13. 13.
    Liberman U, Weiss SR, Broll J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 1995; 333: 1437–43PubMedCrossRefGoogle Scholar
  14. 14.
    Overgaard K, Hansen MA, Jensen SB, et al. Effect of salcatonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose-response study. BMJ 1992; 305: 556–61PubMedCrossRefGoogle Scholar
  15. 15.
    Watts NB, Harris ST, Genant HK, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990; 323: 73–9PubMedCrossRefGoogle Scholar
  16. 16.
    Axelrod DW, Teitelbaum SL. Results of long-term cyclical etidronate therapy: bone histomorphometry and clinical correlates. J Bone Miner Res 1994; 9 Suppl. 1: 136Google Scholar
  17. 17.
    Beresford SA, Weiss NS, Voigt F, et al. Risk of endometrial cancer in relation to use of oestrogen combined with cyclic progestagen therapy in postmenopausal women. Lancet 1997; 349: 458–61PubMedCrossRefGoogle Scholar
  18. 18.
    Bergkvist L, Adami HO, Persson I, et al. The risk of breast cancer after estrogen-progestin replacement. N Engl J Med 1989; 321: 293–7PubMedCrossRefGoogle Scholar
  19. 19.
    Maconi G, Porro GB. Multiple ulcerative esophagitis caused by alendronate. Am J Gastroenterol 1995; 90: 1889–90PubMedGoogle Scholar
  20. 20.
    Reginster JY. Calcitonin for prevention and treatment of osteoporosis. Am J Med 1993; 95: 44–7CrossRefGoogle Scholar
  21. 21.
    Canalis E, McCarthy TL, Centrella M. Differential effects of continuous and transient treatment with parathyroid hormone related peptide (PTHrp) on bone collagen synthesis. Endocrinology 1990; 126: 1806–12PubMedCrossRefGoogle Scholar
  22. 22.
    Reeve J. PTH: a future role in the management of osteoporosis? J Bone Miner Res 1996; 11: 440–5PubMedCrossRefGoogle Scholar
  23. 23.
    Eriksen EF, Melsen F, Mosekilde L. Drug therapy: formationstimulating regimens. In: Riggs BL, Melton LJ, editors. Osteoporosis: etiology, diagnosis and management. Philadelphia: Lippincott-Raven, 1995: 403–34Google Scholar
  24. 24.
    Reeve J, Arlot ME, Price TR, et al. Periodic courses of human 1-34 parathyroid peptide alternating with calcitriol paradoxically reduce bone remodeling in spinal osteoporosis. Eur J Clin Invest 1987; 17: 421–8PubMedCrossRefGoogle Scholar
  25. 25.
    Slovick DM, Neer RM, Potts JT. Short-term effects of synthetic human parathyroid hormone (1-34) administration on bone mineral metabolism in osteoporotic patients. J Clin Invest 1981; 68: 1261–71CrossRefGoogle Scholar
  26. 26.
    Finkelstein JS, Klibanski A, Schaefer EH, et al. Parathyroid hormone for the prevention of bone loss induced by estrogen deficiency. N Engl J Med 1994; 331: 1618–23PubMedCrossRefGoogle Scholar
  27. 27.
    Hodsman A, Fraher L, Adachi J. A clinical trial of cyclical clodronate as maintenance therapy following withdrawal of parathyroid hormone in the treatment of postmenopausal osteoporosis. J Bone Miner Res 1995; 10 Suppl.: 200Google Scholar
  28. 28.
    Lindsay R, Cosman F, Shen V, et al. Bone mass increments induced by PTH treatment can be maintained by estrogen. J Bone Miner Res 1995; 10 Suppl.: 200Google Scholar
  29. 29.
    Lindsay R, Hodsman A, Genant H, et al. A randomized controlled multi-center study of 1-84hPTH for treatment of postmenopausal osteoporosis. Bone 1998; 23 Suppl.: S175Google Scholar
  30. 30.
    Kurland ES, Cosman F, McMahon DJ, et al. Changes in bone markers predict bone accrual in osteoporotic men treated with parathyroid hormone. Bone 1998; 23 Suppl.: S1CrossRefGoogle Scholar
  31. 31.
    Shore RM, Chesney RW, Mazess RB, et al. Bone mineral status in growth hormone deficiency. J Pediatr 1980; 96: 393–6PubMedCrossRefGoogle Scholar
  32. 32.
    Riggs BL. Formation-stimulating regimens other than sodium fluoride. Am J Med 1993; 95: 62–8CrossRefGoogle Scholar
  33. 33.
    Marie PJ, Garbat MT, Hott M, et al. Effect of low doses of stable strontium on bone metabolism in rats. Miner Electrolyte Metab 1985; 11: 5–13PubMedGoogle Scholar
  34. 34.
    Marie PJ, Hott M. Short-term effects of fluoride and strontium on bone formation and resorption in the mouse. Metabolism 1986; 35: 547–51PubMedCrossRefGoogle Scholar
  35. 35.
    Grynpas MD, Hamilton E, Cheung R, et al. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 1996; 18: 253–9PubMedCrossRefGoogle Scholar
  36. 36.
    Boivin G, Deloffre P, Perrat B, et al. Strontium (Sr) distribution and interreactions with bone mineral in male monkey iliac bone after strontium salt (S12911) administration. J Bone Miner Res 1996 Sep; 11 (9): 1302–11PubMedCrossRefGoogle Scholar
  37. 37.
    Amman P, Rizzoli R, Deloffre P, et al. The increase in vertebral bone mass induced in intact rats by long-term administration of the strontium salt S-12911 is directly correlated with vertebral bone strength [abstract]. Osteoporos Int 1996; 6: 259Google Scholar
  38. 38.
    Reginster JY, Roux C, Tsouderos Y, et al. Role of the strontium ranelate in the prevention of early postmenopausal bone loss: a double-blind, prospective, randomized, placebo-controlled study. Arthritis Rheum 1998; 41 Suppl.: 580Google Scholar
  39. 39.
    Kaufman JM, Taelman P, Vermeulen A, et al. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab 1993; 74: 118–23CrossRefGoogle Scholar
  40. 40.
    Demuinck Keizer-Schrama S, Rikken B, Wynne HJ, et al. Doseresponse study of biosynthetic hGH in GH deficient children. J Clin Endocrinol Metab 1992; 74: 898–905CrossRefGoogle Scholar
  41. 41.
    Rudman D, Feller AG, Nagraj HS, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990; 323: 1–6PubMedCrossRefGoogle Scholar
  42. 42.
    Brixen K, Nielsen HK, Mosekilde L, et al. A short course of recombinant human growth hormone treatment stimulates osteoblasts and activates bone remodeling in normal human volunteers. J Bone Miner Res 1990; 5: 609–18PubMedCrossRefGoogle Scholar
  43. 43.
    Kelijman M. Age-related alterations of the growth hormone/insulin- like-growth-factor I axis. J Am Geriatr Soc 1991; 39: 295–307PubMedGoogle Scholar
  44. 44.
    Rosen CJ, Donahue LR, Hunter SJ. Age-related changes in insulin- like growth factor binding proteins. J Clin Endocrinol Metab 1990; 71: 575–9PubMedCrossRefGoogle Scholar
  45. 45.
    Johansson AG, Lindh E, Ljunghall S. Insulin-like growth factor stimulates bone turnover in osteoporosis [letter]. Lancet 1992; 339 (8809): 1619PubMedCrossRefGoogle Scholar
  46. 46.
    Svenson J, Lall S, Dickson L, et al. Effects of GH-releasing substances on bone mass in adult female rats. Bone 1998; 23 Suppl.: S466Google Scholar
  47. 47.
    Murphy G, Weiss S, Balske A, et al. Treatment of postmenopausal osteoporosis with alendronate and MK-677 (a growth hormone secretagogue) individually and in combination. Bone 1998; 23 Suppl.: S468Google Scholar
  48. 48.
    Aloia JF, Zanz I, Ellis K, et al. Effects of GH in osteoporosis. J Clin Endocrinol Metab 1976; 43: 992–9PubMedCrossRefGoogle Scholar
  49. 49.
    Moller MK, Brixen K, Andresen J, et al. Combined HRT and cyclic growth hormone therapy for osteoporosis: results of a 2 year randomized, controlled trial. Bone 1998; 23 Suppl.: S233CrossRefGoogle Scholar
  50. 50.
    Aloia JF, Vaswani A, Meunier PJ, et al. Coherence treatment of postmenopausal osteoporosis with GH and calcitonin. Calcif Tissue Int 1987; 40: 253–9PubMedCrossRefGoogle Scholar
  51. 51.
    Johansson AG, Lindh E, Blum WF, et al. Effects of short term treatment with IGF-1 and GH on markers of bone metabolism in idiopathic osteoporosis [abstract]. J Bone Miner Res 1994; 9: 328Google Scholar
  52. 52.
    Ebeling PR, Jones JD, O’Fallon WM, et al. Short term effects of recombinant human insulin-like growth factor I on bone turnover in normal women. J Clin Endocrinol Metab 1993; 77: 1384–7PubMedCrossRefGoogle Scholar
  53. 53.
    Mohan S, Bautista CM, Wergedal J, et al. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: a potential local regulator of IGF action. Proc Natl Acad Sci USA 1989; 86 (21): 8338–42PubMedCrossRefGoogle Scholar
  54. 54.
    Nasurawa K, Nakaruma T, Suzuki K, et al. The effects of recombinant human insulin-like growth factor (rhIFG)-1 and rh IFG-1/IGF binding protein-3 administration on rat osteopenia induced by ovariectomy with concomitant bilateral sciatic neurectomy. J Bone Miner Res 1995; 10: 1853–64Google Scholar
  55. 55.
    Geusens P, Bouillon R, Broos P, et al. Musculoskeletal effects of recombinant human insulin-like growth factor-I (rhIGFI)/IGF binding protein-3 (IGFBP-3) in hip fracture patients: results from a double blind placebo-controlled phase II study. Bone 1998; 23 Suppl.: S157Google Scholar
  56. 56.
    Saltman PD, Strause LG. The role of trace minerals in osteoporosis. J Am Coll Nutr 1993; 12: 384–9PubMedGoogle Scholar
  57. 57.
    Reginster JY, Strause LG, Saltman P, et al. Trace elements and postmenopausal osteoporosis: a preliminary study of decreased serum manganese. Med Sci Res 1988; 16: 337–8Google Scholar
  58. 58.
    Biquet I, Collette J, Dauphin JF, et al. Prevention of postmenopausal bone loss by administration of boron [abstract]. Osteoporos Int 1996; 6: 249CrossRefGoogle Scholar
  59. 59.
    Keeting PE, Oursler MJ, Wiegand KE, et al. Zeolite A increases proliferation, differentiation, and transforming growth factor b production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res 1992; 7: 1281–9PubMedCrossRefGoogle Scholar
  60. 60.
    Franchimont N, Franchimont P, Gaspar S, et al. Organic silicon decreases interleukin 6 but not leukemia inhibiting factor production in human osteoblast like cells in vitro [abstract]. Bone 1995; 16 Suppl. 1: 226SGoogle Scholar
  61. 61.
    Feskanich D, Weber P, Willett WC, et al. Vitamin K intake and hip fracture in women. Bone 1998; 23 Suppl.: S151Google Scholar
  62. 62.
    Schlesinger PH, Teitelbaum SL, Pacifici R, et al. A new class of anti-osteoporotic agents: group IIIA transition metal complexes with very high bone affinity and specific osteoclast inhibition properties. Bone 1998; 23 Suppl.: S157Google Scholar
  63. 63.
    Seeherman HJ, Trippel S, Kirker-Head C. A single intra-osseous injection of rhBMP-2 stimulates bone formation in the proximal femur of normal adult sheep. Bone 1998; 23 Suppl.: S1CrossRefGoogle Scholar
  64. 64.
    Raisz LG, Pilbeam CC, Fall PM. Prostaglandins: mechanisms of action and regulation of production in bone. Osteoporos Int 1993; 136: 136–40CrossRefGoogle Scholar
  65. 65.
    Kasten TP, Collin-Osdoby P, Patel N, et al. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci USA 1994; 91: 3569–73PubMedCrossRefGoogle Scholar
  66. 66.
    Dinushka R, Wimalawansa SJ, Snaratna NA, et al. Combination of nitric oxide and bisphosphonates further enhances increments in bone mineral density. Bone 1998; 23 Suppl.: S311Google Scholar
  67. 67.
    MacIntyre I, Zaidi M, Alam AS, et al. Osteoclast inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci USA 1991; 88: 2936–40PubMedCrossRefGoogle Scholar
  68. 68.
    Wimalawansa SJ, De Marco G, Gangula P, et al. Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone 1996; 18: 301–4PubMedCrossRefGoogle Scholar
  69. 69.
    Ralston SH, Ho LP, Helfrich MH, et al. Nitric oxide: a cytokineinduced regulator of bone resorption. J Bone Miner Res 1995; 10: 1040–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1999

Authors and Affiliations

  • Jean-Yves Reginster
    • 1
    • 2
    • 3
  • Yves Henrotin
    • 2
  • Christiane Gosset
    • 1
    • 3
  1. 1.WHO Collaborating Center for Public Health Aspects of Osteoarticular DisordersUniversity of LiègeLiègeBelgium
  2. 2.Bone and Cartilage Metabolism UnitUniversity of LiègeLiègeBelgium
  3. 3.Department of Epidemiology and Public HealthUniversity of LiègeLiègeBelgium

Personalised recommendations