, Volume 22, Issue 1, pp 27–36 | Cite as

Targeted Immunotherapy for Staphylococcal Infections

Focus on Anti-MSCRAMM Antibodies
  • Michael Otto
Drug Development


Staphylococcal infections represent an enormous burden to the public health system in the US and worldwide. While traditionally restricted to the hospital setting, highly virulent strains have recently emerged that may cause severe, even fatal, disease in healthy adults outside healthcare settings. This situation, together with the increasing resistance to many antibacterials in a wide variety of staphylococcal strains, requires that vaccine development for staphylococcal diseases be re-evaluated. Finding a vaccine for staphylococci is not trivial, as protective immunity to staphylococcal infections does not appear to exist at a significant degree, which may be partly due to the fact that our immune system is in constant contact with staphylococcal antigens and many strains are commensal organisms on human epithelia. Furthermore, the most virulent species, Staphylococcus aureus, produces protein A, a powerful means to evade acquired host defense.

While two high-profile vaccine preparations have failed clinical trials within the last few years, promising results from novel approaches based on the combination of systematically selected antigens have been reported. These combinatory vaccines target microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), a family of bacterial proteins that bind to human extracellular matrix components. In addition, polysaccharide and other nonprotein antigens may represent suitable vaccine targets on the staphylococcal cell surface.


Infective Endocarditis Teichoic Acid Staphylococcal Infection Vaccine Preparation Nasal Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID).

The author has no conflicts of interest directly related to the contents of this review.


  1. 1.
    Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339(8): 520–32PubMedCrossRefGoogle Scholar
  2. 2.
    Chambers HF. Community-associated MRSA: resistance and virulence converge. N Engl J Med 2005; 352(14): 1485–7PubMedCrossRefGoogle Scholar
  3. 3.
    Lee NE, Taylor MM, Bancroft E, et al. Risk factors for community-associated methicillin-resistant Staphylococcus aureus skin infections among HIV-positive men who have sex with men. Clin Infect Dis 2005; 40(10): 1529–34PubMedCrossRefGoogle Scholar
  4. 4.
    Kazakova SV, Hageman JC, Matava M, et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med 2005; 352(5): 468–75PubMedCrossRefGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus: Minnesota and North Dakota, 1997–1999. JAMA 1999; 282(12): 1123–5CrossRefGoogle Scholar
  6. 6.
    Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections: Los Angeles County, California, 2002–2003. MMWR Morb Mortal Wkly Rep 2003; 52 (5): 88Google Scholar
  7. 7.
    Moran GJ, Krishnadasan A, Gorwitz RJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 2006; 355(7): 666–74PubMedCrossRefGoogle Scholar
  8. 8.
    Diep BA, Gill SR, Chang RF, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 2006; 367(9512): 731–9PubMedCrossRefGoogle Scholar
  9. 9.
    Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 2003; 111(9): 1265–73PubMedGoogle Scholar
  10. 10.
    Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin Infect Dis 1998; 26(5): 1182–7PubMedCrossRefGoogle Scholar
  11. 11.
    Staphylococcus aureus resistant to vancomycin: United States, 2002. MMWR Morb Mortal Wkly Rep 2002; 51 (26): 565-7Google Scholar
  12. 12.
    Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 2001; 1(3): 147–55PubMedCrossRefGoogle Scholar
  13. 13.
    von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001; 344(1): 11–6CrossRefGoogle Scholar
  14. 14.
    National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004; 32 (8): 470-85Google Scholar
  15. 15.
    Projan SJ, Nesin M, Dunman PM. Staphylococcal vaccines and immunotherapy: to dream the impossible dream? Curr Opin Pharmacol 2006; 6(5): 473–9PubMedCrossRefGoogle Scholar
  16. 16.
    Pan ES, Diep BA, Charlebois ED, et al. Population dynamics of nasal strains of methicillin-resistant Staphylococcus aureus — and their relation to community-associated disease activity. J Infect Dis 2005; 192(5): 811–8PubMedCrossRefGoogle Scholar
  17. 17.
    Salgado CD, Farr BM, Calfee DP. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis 2003; 36(2): 131–9PubMedCrossRefGoogle Scholar
  18. 18.
    Venkatesh MP, Placencia F, Weisman LE. Coagulase-negative staphylococcal infections in the neonate and child: an update. Semin Pediatr Infect Dis 2006; 17(3): 120–7PubMedCrossRefGoogle Scholar
  19. 19.
    Otto M. Virulence factors of the coagulase-negative staphylococci. Front Biosci 2004; 9: 841–63PubMedCrossRefGoogle Scholar
  20. 20.
    O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 2004; 17(1): 218–34PubMedCrossRefGoogle Scholar
  21. 21.
    Cramton SE, Gerke C, Schnell NF, et al. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 1999; 67(10): 5427–33PubMedGoogle Scholar
  22. 22.
    Mack D, Fischer W, Krokotsch A, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 1996; 178(1): 175–83PubMedGoogle Scholar
  23. 23.
    Kocianova S, Vuong C, Yao Y, et al. Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 2005; 115(3): 688–94PubMedGoogle Scholar
  24. 24.
    Rice KC, Mann EE, Endres JL, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 2007; 104(19): 8113–8PubMedCrossRefGoogle Scholar
  25. 25.
    Gross M, Cramton SE, Gotz F, et al. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 2001; 69(5): 3423–6PubMedCrossRefGoogle Scholar
  26. 26.
    Graille M, Stura EA, Corper AL, et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 2000; 97(10): 5399–404PubMedCrossRefGoogle Scholar
  27. 27.
    Gomez MI, Lee A, Reddy B, et al. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 2004; 10(8): 842–8PubMedCrossRefGoogle Scholar
  28. 28.
    Greenberg DP, Bayer AS, Cheung AL, et al. Protective efficacy of protein A-specific antibody against bacteremic infection due to Staphylococcus aureus in an infant rat model. Infect Immun 1989; 57(4): 1113–8PubMedGoogle Scholar
  29. 29.
    Etz H, Minh DB, Henics T, et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc Natl Acad Sci U S A 2002; 99(10): 6573–8PubMedCrossRefGoogle Scholar
  30. 30.
    Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol 2005; 3(12): 948–58PubMedCrossRefGoogle Scholar
  31. 31.
    Vernachio JH, Bayer AS, Ames B, et al. Human immunoglobulin G recognizing fibrinogen-binding surface proteins is protective against both Staphylococcus aureus and Staphylococcus epidermidis infections in vivo. Antimicrob Agents Chemother 2006; 50(2): 511–8PubMedCrossRefGoogle Scholar
  32. 32.
    Fattom AI, Horwith G, Fuller S, et al. Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 2004; 22(7): 880–7PubMedCrossRefGoogle Scholar
  33. 33.
    Fattom A, Fuller S, Propst M, et al. Safety and immunogenicity of a booster dose of Staphylococcus aureus types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. Vaccine 2004; 23(5): 656–63PubMedCrossRefGoogle Scholar
  34. 34.
    Foster TJ, Hook M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 1998; 6(12): 484–8PubMedCrossRefGoogle Scholar
  35. 35.
    Rivas JM, Speziale P, Patti JM, et al. MSCRAMM-targeted vaccines and immunotherapy for staphylococcal infection. Curr Opin Drug Discov Devel 2004; 7(2): 223–7PubMedGoogle Scholar
  36. 36.
    Davis SL, Gurusiddappa S, McCrea KW, et al. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 2001; 276(30): 27799–805PubMedCrossRefGoogle Scholar
  37. 37.
    McCrea KW, Hartford O, Davis S, et al. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 2000; 146 (Pt 7): 1535–46PubMedGoogle Scholar
  38. 38.
    Jonsson K, McDevitt D, McGavin MH, et al. Staphylococcus aureus expresses a major histocompatibility complex class II analog. J Biol Chem 1995; 270(37): 21457–60PubMedCrossRefGoogle Scholar
  39. 39.
    Bowden MG, Visai L, Longshaw CM, et al. Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 2002; 277(45): 43017–23PubMedCrossRefGoogle Scholar
  40. 40.
    Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 2003; 48(6): 1429–49PubMedCrossRefGoogle Scholar
  41. 41.
    Wright III JS, Jin R, Novick RP. Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci U S A 2005; 102(5): 1691–6PubMedCrossRefGoogle Scholar
  42. 42.
    Nilsson IM, Patti JM, Bremell T, et al. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J Clin Invest 1998; 101(12): 2640–9PubMedCrossRefGoogle Scholar
  43. 43.
    Schennings T, Heimdahl A, Coster K, et al. Immunization with fibronectin binding protein from Staphylococcus aureus protects against experimental endocarditis in rats. Microb Pathog 1993; 15(3): 227–36PubMedCrossRefGoogle Scholar
  44. 44.
    Josefsson E, Hartford O, O’Brien L, et al. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis 2001; 184(12): 1572–80PubMedCrossRefGoogle Scholar
  45. 45.
    Rennermalm A, Li YH, Bohaufs L, et al. Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protect against dissemination of infection in the rat. Vaccine 2001; 19(25–26): 3376–83PubMedCrossRefGoogle Scholar
  46. 46.
    Kuklin NA, Clark DJ, Secore S, et al. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun 2006; 74(4): 2215–23PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou H, Xiong ZY, Li HP, et al. An immunogenicity study of a newly fusion protein Cna-FnBP vaccinated against Staphylococcus aureus infections in a mice model. Vaccine 2006; 24(22): 4830–7PubMedCrossRefGoogle Scholar
  48. 48.
    Brouillette E, Lacasse P, Shkreta L, et al. DNA immunization against the clumping factor A (ClfA) of Staphylococcus aureus. Vaccine 2002; 20(17–18): 2348–57PubMedCrossRefGoogle Scholar
  49. 49.
    Therrien R, Lacasse P, Grondin G, et al. Lack of protection of mice against Staphylococcus aureus despite a significant immune response to immunization with a DNA vaccine encoding collagen-binding protein. Vaccine 2007; 25(27): 5053–61PubMedCrossRefGoogle Scholar
  50. 50.
    Nour El-Din AN, Shkreta L, Talbot BG, et al. DNA immunization of dairy cows with the clumping factor A of Staphylococcus aureus. Vaccine 2006; 24(12): 1997–2006PubMedCrossRefGoogle Scholar
  51. 51.
    Gaudreau MC, Lacasse P, Talbot BG. Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus. Vaccine 2007; 25(5): 814–24PubMedCrossRefGoogle Scholar
  52. 52.
    Castagliuolo I, Piccinini R, Beggiao E, et al. Mucosal genetic immunization against four adhesins protects against Staphylococcus aureus-induced mastitis in mice. Vaccine 2006; 24(20): 4393–402PubMedCrossRefGoogle Scholar
  53. 53.
    Cook HA, Furuya EY, Larson E, et al. Heterosexual transmission of community-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2007; 44(3): 410–3PubMedCrossRefGoogle Scholar
  54. 54.
    Schaffer AC, Solinga RM, Cocchiaro J, et al. Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 2006; 74(4): 2145–53PubMedCrossRefGoogle Scholar
  55. 55.
    Clarke SR, Brummell KJ, Horsburgh MJ, et al. Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis 2006; 193(8): 1098–108PubMedCrossRefGoogle Scholar
  56. 56.
    Pipeline. Rockville (MD): Nabi Biopharmaceuticals [online]. Available from URL: [Accessed 2007 Nov 4]
  57. 57.
    Stranger-Jones YK, Bae T, Schneewind O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 2006; 103(45): 16942–7PubMedCrossRefGoogle Scholar
  58. 58.
    Arbeit RD, Karakawa WW, Vann WF, et al. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis 1984; 2(2): 85–91PubMedCrossRefGoogle Scholar
  59. 59.
    Karakawa WW, Sutton A, Schneerson R, et al. Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 1988; 56(5): 1090–5PubMedGoogle Scholar
  60. 60.
    Fattom AI, Sarwar J, Ortiz A, et al. A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun 1996; 64(5): 1659–65PubMedGoogle Scholar
  61. 61.
    Lee JC, Park JS, Shepherd SE, et al. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun 1997; 65(10): 4146–51PubMedGoogle Scholar
  62. 62.
    Maira-Litran T, Kropec A, Goldmann DA, et al. Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-beta-(1–6)-glucosamine. Infect Immun 2005; 73(10): 6752–62PubMedCrossRefGoogle Scholar
  63. 63.
    Vuong C, Kocianova S, Voyich JM, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 2004; 279(52): 54881–6PubMedCrossRefGoogle Scholar
  64. 64.
    Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 1996; 273(5273): 367–70PubMedCrossRefGoogle Scholar
  65. 65.
    Cerca N, Maira-Litran T, Jefferson KK, et al. Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide. Proc Natl Acad Sci U S A 2007; 104(18): 7528–33PubMedCrossRefGoogle Scholar
  66. 66.
    Vuong C, Voyich JM, Fischer ER, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 2004; 6(3): 269–75PubMedCrossRefGoogle Scholar
  67. 67.
    Fedtke I, Mader D, Kohler T, et al. A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 2007 Aug; 65(4): 1078–91PubMedCrossRefGoogle Scholar
  68. 68.
    Weidenmaier C, Kokai-Kun JF, Kristian SA, et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 2004; 10(3): 243–5PubMedCrossRefGoogle Scholar
  69. 69.
    Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect 2002; 4(4): 481–9PubMedCrossRefGoogle Scholar
  70. 70.
    Rennermalm A, Nilsson M, Flock JI. The fibrinogen binding protein of Staphylococcus epidermidis is a target for opsonic antibodies. Infect Immun 2004; 72(5): 3081–3PubMedCrossRefGoogle Scholar
  71. 71.
    Sellman BR, Howell AP, Kelly-Boyd C, et al. Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis. Infect Immun 2005; 73(10): 6591–600PubMedCrossRefGoogle Scholar
  72. 72.
    Pourmand MR, Clarke SR, Schuman RF, et al. Identification of antigenic components of Staphylococcus epidermidis expressed during human infection. Infect Immun 2006; 74(8): 4644–54PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  1. 1.Laboratory of Human Bacterial Pathogenesis, Rocky Mountain LaboratoriesNational Institute of Allergy and Infectious Diseases, The National Institutes of HealthHamiltonUSA

Personalised recommendations