, Volume 17, Issue 6, pp 391–394 | Cite as

Bone Graft Alternatives for Spinal Fusion

  • Jonathan N. Grauer
  • John M. Beiner
  • Brian K. Kwon
  • Alexander R. Vaccaro
Leading Article


Bone grafting to achieve fusion is frequently performed in spinal surgery. Autograft is the gold standard bone graft material. However, due to limitations of supply and morbidity associated with the harvest of autograft, alternatives are being considered. Osteoconductive matrices, such as allograft, calcium or ceramic preparations are one such class of potential bone graft alternatives, but generally they lack osteoinductive properties. Recent attention has focused on osteoinductive materials such as demineralised bone matrix, recombinant bone morphogenetic proteins and bone marrow aspirates or blood product concentrates. These products may be combined with osteoconductive carriers and are clearly finding a place in the clinical arena.


Bone Graft Fusion Rate Allograft Bone Demineralised Bone Matrix Bone Graft Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this review. Research support was received from Stryker Biotech (Hopkinton, MA, USA).


  1. 1.
    Arlington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop 1996 Aug; 329: 300–9CrossRefGoogle Scholar
  2. 2.
    Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine 1995 May 1; 20(9): 1055–60PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta AR, Shah NR, Patel TC, et al. Perioperative long-term complications of iliac crest bone graft harvesting for spinal surgery: a quantitative review of the literature. Int Med J 2001; 8: 163–6Google Scholar
  4. 4.
    Kurz LT, Garfin SR, Booth Jr RE. Harvesting autogenous iliac bone grafts: a review of complications and techniques. Spine 1989 Dec; 14(12): 1324–31PubMedCrossRefGoogle Scholar
  5. 5.
    Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop 1985 Nov; 200: 322–42PubMedGoogle Scholar
  6. 6.
    An HS, Lynch K, Toth J. Prospective comparison of autograft vs allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 1995 Apr; 8(2): 131–5PubMedCrossRefGoogle Scholar
  7. 7.
    Jorgenson SS, Lowe TG, France J, et al. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient: a minimum 1-year follow-up in 144 patients. Spine 1994 Sep 15; 19(18): 2048–53PubMedCrossRefGoogle Scholar
  8. 8.
    Nugent PJ, Dawson EG. Intertransverse process lumbar arthrodesis with allogeneic fresh-frozen bone graft. Clin Orthop 1993 Feb; 287: 107–11PubMedGoogle Scholar
  9. 9.
    West JL, Ogilvie JW, Bradford DS. Pedicle screw plate fixation with allograft bone [abstract]. Orthop Trans 1991; 15: 733Google Scholar
  10. 10.
    Blanco JS, Sears CJ. Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine 1997 Jun 15; 22(12): 1338–42PubMedCrossRefGoogle Scholar
  11. 11.
    Dodd CA, Fergusson CM, Freedman L, et al. Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 1988 May; 70(3): 431–4PubMedGoogle Scholar
  12. 12.
    Jones KC, Andrish J, Kuivila T, et al. Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scoliosis. J Pediatr Orthop 2002 May–Jun; 22(3): 285–9PubMedCrossRefGoogle Scholar
  13. 13.
    Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical disease. Clin Orthop 2002 Jan; 394: 27–38PubMedCrossRefGoogle Scholar
  14. 14.
    Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. LaGrange (IL): North Am Spine Society, 2002: 1–16Google Scholar
  15. 15.Bucholz
    RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987 Apr; 18(2): 323–34Google Scholar
  16. 16.
    Frenkel SR, Moskovich R, Spivak J, et al. Demineralized bone matrix: enhancement of spinal fusion. Spine 1993 Sep 15; 18(12): 1634–9PubMedCrossRefGoogle Scholar
  17. 17.
    Lovell TP, Dawson EG, Nilsson OS, et al. Augmentation of spinal fusion with bone morphogenetic protein in dogs. Clin Orthop 1989 Jun; 243: 266–74PubMedGoogle Scholar
  18. 18.
    Martin Jr GJ, Boden SD, Titus L, et al. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine1999 Apr 1; 24(7): 637–45PubMedCrossRefGoogle Scholar
  19. 19.
    Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 1998 Jan 15; 23(2): 159–67PubMedCrossRefGoogle Scholar
  20. 20.
    An HS, Simpson JM, Glover JM, et al. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion: a prospective multicenter study. Spine 1995 Oct 15; 20(20): 2211–6PubMedCrossRefGoogle Scholar
  21. 21.
    Lee YP, Wang JC, Kamin LEA, et al. The direct comparison of different commercially available demineralized bone matrix substances in an athymic rat model. Seattle (WA): North Am Spine Society, 2001Google Scholar
  22. 22.
    Wang JC, Davies M, Kanim LEA, et al. Prospective comparison of commercially available demineralized bone matrix for spine fusion. New Orleans (LA): North Am Spine Society, 2000Google Scholar
  23. 23.
    Grauer JN, Patel TC, Erulkar JS, et al. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 2001; 26: 127–33PubMedCrossRefGoogle Scholar
  24. 24.
    Patel TC, Erulkar JS, Grauer JN, et al. Osteogenic protein-1 overcomes the inhibitory effect of nicotine on posterolateral lumbar fusion. Spine 2001 Aug 1; 26(15): 1656–61PubMedCrossRefGoogle Scholar
  25. 25.
    Cunningham BW, Shimamoto N, Sefter J, et al. Osteointegration of autograft vs osteogenic protein 1. Seattle (WA): North Am Spine Society, 2001Google Scholar
  26. 26.
    Patel TC, McCulloch JA, Vacarro AR, et al. A pilot safety and efficacy study of OP-1 (rhBMP-7) in posterolateral lumbar fusion as a replacement for iliac crest autograft. Seattle (WA): North Am Spine Society, 2001Google Scholar
  27. 27.
    Patel TC, Vaccaro AR, Truumees E, et al. Two-year follow-up of a safety and efficacy study of OP-1 (rhBMP-7) as an adjunct to posterolateral lumbar fusion. Seattle (WA): North Am Spine Society, 2001Google Scholar
  28. 28.
    Speck G. Posterolateral lumbar fusion using OP-1: preliminary results. Adelaide (SA): Australian Spine Society, 2000Google Scholar
  29. 29.
    Schimandle JH, Boden SD, Hutton WC. Experimental spine fusion with recombinant human bone morphogenetic protein 2 (rhBMP-2). Spine 1995 Jun; 20(12): 1326–37PubMedGoogle Scholar
  30. 30.
    Boden SD, Kang J, Sandhu H, et al. Use of recombinant bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial.2002 Volvo Award in clinical studies. Spine 2002 Dec 1; 27(23): 2662–73PubMedCrossRefGoogle Scholar
  31. 31.
    Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002 Mar 15; 27(6): 567–75PubMedCrossRefGoogle Scholar
  32. 32.
    Burkus JK, Heim SE, Gornet MF, et al. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 2003 Apr; 16(2): 113–22PubMedCrossRefGoogle Scholar
  33. 33.
    Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 2002 Nov 1; 27(21): 2396–408PubMedCrossRefGoogle Scholar
  34. 34.
    Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000; 92(2 Suppl.): 191–6PubMedGoogle Scholar
  35. 35.
    Spiro RC, Thompson AY, Poser JW. Spinal fusion with recombinant human growth and differentiation factor-5 combined with mineralized collagen matrix. Anat Rec 2001 Aug 1; 263(4): 388–95PubMedCrossRefGoogle Scholar
  36. 36.
    Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998 Dec 1; 23(23): 2486–92PubMedCrossRefGoogle Scholar
  37. 37.
    Burwell RG. The function of bone marrow in the incorporation of bone graft. Clin Orthop 1985 Nov; 200: 125–41PubMedGoogle Scholar
  38. 38.
    Curylo LJ, Johnstone B, Petersilge CA, et al. Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine 1999 Mar 1; 24(5): 434–9PubMedCrossRefGoogle Scholar
  39. 39.
    Muschler GF. Bone marrow aspirate: a source of connective tissue stem cells. Emerging Technologies Conference; 2002 Oct 18; Washington (DC)Google Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Jonathan N. Grauer
    • 1
  • John M. Beiner
    • 1
  • Brian K. Kwon
    • 1
  • Alexander R. Vaccaro
    • 1
  1. 1.Rothman Institute at Jefferson UniversityPhiladelphiaUSA

Personalised recommendations