Skip to main content
Log in

Bone Graft Alternatives for Spinal Fusion

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Bone grafting to achieve fusion is frequently performed in spinal surgery. Autograft is the gold standard bone graft material. However, due to limitations of supply and morbidity associated with the harvest of autograft, alternatives are being considered. Osteoconductive matrices, such as allograft, calcium or ceramic preparations are one such class of potential bone graft alternatives, but generally they lack osteoinductive properties. Recent attention has focused on osteoinductive materials such as demineralised bone matrix, recombinant bone morphogenetic proteins and bone marrow aspirates or blood product concentrates. These products may be combined with osteoconductive carriers and are clearly finding a place in the clinical arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Arlington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop 1996 Aug; 329: 300–9

    Article  Google Scholar 

  2. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine 1995 May 1; 20(9): 1055–60

    Article  PubMed  CAS  Google Scholar 

  3. Gupta AR, Shah NR, Patel TC, et al. Perioperative long-term complications of iliac crest bone graft harvesting for spinal surgery: a quantitative review of the literature. Int Med J 2001; 8: 163–6

    Google Scholar 

  4. Kurz LT, Garfin SR, Booth Jr RE. Harvesting autogenous iliac bone grafts: a review of complications and techniques. Spine 1989 Dec; 14(12): 1324–31

    Article  PubMed  CAS  Google Scholar 

  5. Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop 1985 Nov; 200: 322–42

    PubMed  Google Scholar 

  6. An HS, Lynch K, Toth J. Prospective comparison of autograft vs allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 1995 Apr; 8(2): 131–5

    Article  PubMed  CAS  Google Scholar 

  7. Jorgenson SS, Lowe TG, France J, et al. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient: a minimum 1-year follow-up in 144 patients. Spine 1994 Sep 15; 19(18): 2048–53

    Article  PubMed  CAS  Google Scholar 

  8. Nugent PJ, Dawson EG. Intertransverse process lumbar arthrodesis with allogeneic fresh-frozen bone graft. Clin Orthop 1993 Feb; 287: 107–11

    PubMed  Google Scholar 

  9. West JL, Ogilvie JW, Bradford DS. Pedicle screw plate fixation with allograft bone [abstract]. Orthop Trans 1991; 15: 733

    Google Scholar 

  10. Blanco JS, Sears CJ. Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine 1997 Jun 15; 22(12): 1338–42

    Article  PubMed  CAS  Google Scholar 

  11. Dodd CA, Fergusson CM, Freedman L, et al. Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 1988 May; 70(3): 431–4

    PubMed  CAS  Google Scholar 

  12. Jones KC, Andrish J, Kuivila T, et al. Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scoliosis. J Pediatr Orthop 2002 May–Jun; 22(3): 285–9

    Article  PubMed  Google Scholar 

  13. Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical disease. Clin Orthop 2002 Jan; 394: 27–38

    Article  PubMed  Google Scholar 

  14. Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. LaGrange (IL): North Am Spine Society, 2002: 1–16

    Google Scholar 

  15. RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987 Apr; 18(2): 323–34

    Google Scholar 

  16. Frenkel SR, Moskovich R, Spivak J, et al. Demineralized bone matrix: enhancement of spinal fusion. Spine 1993 Sep 15; 18(12): 1634–9

    Article  PubMed  CAS  Google Scholar 

  17. Lovell TP, Dawson EG, Nilsson OS, et al. Augmentation of spinal fusion with bone morphogenetic protein in dogs. Clin Orthop 1989 Jun; 243: 266–74

    PubMed  Google Scholar 

  18. Martin Jr GJ, Boden SD, Titus L, et al. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine1999 Apr 1; 24(7): 637–45

    Article  PubMed  Google Scholar 

  19. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 1998 Jan 15; 23(2): 159–67

    Article  PubMed  CAS  Google Scholar 

  20. An HS, Simpson JM, Glover JM, et al. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion: a prospective multicenter study. Spine 1995 Oct 15; 20(20): 2211–6

    Article  PubMed  CAS  Google Scholar 

  21. Lee YP, Wang JC, Kamin LEA, et al. The direct comparison of different commercially available demineralized bone matrix substances in an athymic rat model. Seattle (WA): North Am Spine Society, 2001

    Google Scholar 

  22. Wang JC, Davies M, Kanim LEA, et al. Prospective comparison of commercially available demineralized bone matrix for spine fusion. New Orleans (LA): North Am Spine Society, 2000

    Google Scholar 

  23. Grauer JN, Patel TC, Erulkar JS, et al. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 2001; 26: 127–33

    Article  PubMed  CAS  Google Scholar 

  24. Patel TC, Erulkar JS, Grauer JN, et al. Osteogenic protein-1 overcomes the inhibitory effect of nicotine on posterolateral lumbar fusion. Spine 2001 Aug 1; 26(15): 1656–61

    Article  PubMed  CAS  Google Scholar 

  25. Cunningham BW, Shimamoto N, Sefter J, et al. Osteointegration of autograft vs osteogenic protein 1. Seattle (WA): North Am Spine Society, 2001

    Google Scholar 

  26. Patel TC, McCulloch JA, Vacarro AR, et al. A pilot safety and efficacy study of OP-1 (rhBMP-7) in posterolateral lumbar fusion as a replacement for iliac crest autograft. Seattle (WA): North Am Spine Society, 2001

    Google Scholar 

  27. Patel TC, Vaccaro AR, Truumees E, et al. Two-year follow-up of a safety and efficacy study of OP-1 (rhBMP-7) as an adjunct to posterolateral lumbar fusion. Seattle (WA): North Am Spine Society, 2001

    Google Scholar 

  28. Speck G. Posterolateral lumbar fusion using OP-1: preliminary results. Adelaide (SA): Australian Spine Society, 2000

    Google Scholar 

  29. Schimandle JH, Boden SD, Hutton WC. Experimental spine fusion with recombinant human bone morphogenetic protein 2 (rhBMP-2). Spine 1995 Jun; 20(12): 1326–37

    PubMed  CAS  Google Scholar 

  30. Boden SD, Kang J, Sandhu H, et al. Use of recombinant bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial.2002 Volvo Award in clinical studies. Spine 2002 Dec 1; 27(23): 2662–73

    Article  PubMed  Google Scholar 

  31. Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002 Mar 15; 27(6): 567–75

    Article  PubMed  Google Scholar 

  32. Burkus JK, Heim SE, Gornet MF, et al. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 2003 Apr; 16(2): 113–22

    Article  PubMed  Google Scholar 

  33. Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 2002 Nov 1; 27(21): 2396–408

    Article  PubMed  Google Scholar 

  34. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000; 92(2 Suppl.): 191–6

    PubMed  CAS  Google Scholar 

  35. Spiro RC, Thompson AY, Poser JW. Spinal fusion with recombinant human growth and differentiation factor-5 combined with mineralized collagen matrix. Anat Rec 2001 Aug 1; 263(4): 388–95

    Article  PubMed  CAS  Google Scholar 

  36. Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998 Dec 1; 23(23): 2486–92

    Article  PubMed  CAS  Google Scholar 

  37. Burwell RG. The function of bone marrow in the incorporation of bone graft. Clin Orthop 1985 Nov; 200: 125–41

    PubMed  Google Scholar 

  38. Curylo LJ, Johnstone B, Petersilge CA, et al. Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine 1999 Mar 1; 24(5): 434–9

    Article  PubMed  CAS  Google Scholar 

  39. Muschler GF. Bone marrow aspirate: a source of connective tissue stem cells. Emerging Technologies Conference; 2002 Oct 18; Washington (DC)

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Research support was received from Stryker Biotech (Hopkinton, MA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Vaccaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grauer, J.N., Beiner, J.M., Kwon, B.K. et al. Bone Graft Alternatives for Spinal Fusion. BioDrugs 17, 391–394 (2003). https://doi.org/10.2165/00063030-200317060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317060-00002

Keywords

Navigation