, Volume 15, Issue 11, pp 729–743 | Cite as

Pathophysiological Role of Leukotrienes in Dermatological Diseases

Potential Therapeutic Implications
Review Article


In vitro and in vivo data have demonstrated that leukotrienes play a key role not only in allergic airway diseases but also in inflammatory reactions of the skin. Antileukotriene drugs, i.e. leukotriene receptor antagonists and synthesis inhibitors, are a new class of anti-inflammatory drugs that have shown clinical efficacy in the management of asthma, allergic rhinitis and inflammatory bowel disease. To address the question of the validity and applicability of published evidence of the use of antileukotriene drugs in dermatological diseases, we reviewed data concerning the pathophysiological effect of leukotrienes in the skin and in skin diseases, and the experience with antileukotriene treatment that has been published.

In vivo and in vitro data suggest that antileukotriene treatment may have efficacy in atopic dermatitis, different types of urticaria or psoriasis and other skin diseases such as bullous skin diseases, collagenoses, Sjogren-Larsson syndrome or Kawasaki disease. Nevertheless, published evidence is very limited and before any conclusions can be drawn, additional basic research needs to be performed with regard to the role of different leukotrienes and leukotriene receptors in skin diseases.

On the basis of these data, randomised and placebo-controlled clinical trials with leukotriene antagonists and synthesis inhibitors should be performed. Moreover, future studies investigating the additive benefit of antileukotriene drugs are warranted, e.g. in combination with antihistamines, corticosteroids or other antiinflammatory drugs.


Psoriasis Atopic Dermatitis Kawasaki Disease Montelukast LTB4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors received no funding for the preparation of this manuscript and have no conflicts of interest with any relevant pharmaceutical companies.


  1. 1.
    Kellaway CH, Trethewie ER. The liberation of a slow reacting smooth muscle-stimulating substance in anaphylaxis. Q J Exp Physiol 1940; 30: 121–45Google Scholar
  2. 2.
    Lewis RA, Austen KF. The biologically active leukotrienes: biosynthesis, metabolism, receptor function and pharmacology. J Clin Invest 1984; 73: 889–97PubMedCrossRefGoogle Scholar
  3. 3.
    Devillier P, Baccard N, Advenier C. Leukotrienes, leukotriene receptor antagonists and leukotriene synthesis inhibitors in asthma: an update. Part II: clinical studies with leukotriene receptor antagonists and leukotriene synthesis inhibitors in asthma. Pharmacol Res 1999; 40: 15–29PubMedCrossRefGoogle Scholar
  4. 4.
    Devillier P, Baccard N, Advenier C. Leukotrienes, leukotriene receptor antagonists and leukotriene synthesis inhibitors in asthma: an update. Part I: synthesis, receptors and role of leukotrienes in asthma. Pharmacol Res 1999; 40: 3–13PubMedCrossRefGoogle Scholar
  5. 5.
    Moqbel R. Leukotriene receptor antagonists in the treatment of asthma: implications for eosinophilic inflammation. Can Respir J 1999; 6: 453–7PubMedGoogle Scholar
  6. 6.
    Leff JA. Leukotriene modifiers as novel therapeutics in asthma. Clin Exp Allergy 1998; 28: 147–53PubMedCrossRefGoogle Scholar
  7. 7.
    McGill KA, Busse WW. Zileuton. Lancet 1996; 348: 519–24PubMedCrossRefGoogle Scholar
  8. 8.
    Reichmuth D, Lockey RF. Present and potential therapy for allergic rhinitis. BioDrugs 2000; 14: 371–87PubMedCrossRefGoogle Scholar
  9. 9.
    Dahlen SE. Leukotriene receptors. Clin Rev Allergy Immunol 1999; 17: 179–91PubMedCrossRefGoogle Scholar
  10. 10.
    Casellas F, Guarner F. Eicosanoids in inflammatory bowel disease: therapeutic implications. Clin Immunother 1996; 6(5): 333–40CrossRefGoogle Scholar
  11. 11.
    Iversen L, Kristensen P, Nissen JB, et al. Purification and characterization of leukotriene A4 hydrolase from human epidermis. FEBS Lett 1995; 358: 316–22PubMedCrossRefGoogle Scholar
  12. 12.
    Ford-Hutchinson AW. 5-lipoxygenase activation in psoriasis: a dead issue? Skin Pharmacol 1993; 6: 292–7PubMedCrossRefGoogle Scholar
  13. 13.
    Iversen L, Fogh K, Ziboh VA, et al. Leukotriene B4 formation during human neutrophil keratinocyte interactions: evidence for transformation of leukotriene A4 by putative keratinocyte leukotriene A4 hydrolase. J Invest Dermatol 1993; 100: 293–8PubMedCrossRefGoogle Scholar
  14. 14.
    Koro O, Furutani K, Hide M, et al. Chemical mediators in atopic dermatitis: involvement of leukotriene B4 released by a type I allergic reaction in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol 1999; 103: 663–70PubMedCrossRefGoogle Scholar
  15. 15.
    Larkin S W, Fraser L, Showell HJ, et al. Prolonged microvascular vasodilatation induced by leukotriene B4 in human skin is cyclooxygenase independent. J Pharmacol Exp Ther 1995; 272: 392–8PubMedGoogle Scholar
  16. 16.
    Rosenbach T, Grabbe J, Moller A, et al. Generation of leukotrienes from normal epidermis and their demonstration in cutaneous disease. Br J Dermatol 1985; 113: 157–67PubMedCrossRefGoogle Scholar
  17. 17.
    Paulissen M, Peereboom-Stegeman JH, van de Kerkhof PC. An ultrastructural study of transcutaneous migration of polymorphonuclear leukocytes following application of LTB4. Skin Pharmacol 1990; 3: 236–47PubMedCrossRefGoogle Scholar
  18. 18.
    Songzhu A, Goetzl EJ. Lipid mediators of hypersensitivity and inflammation. In: Middleton E, Ellis EF, Yunginger JW, editors. Allergy: principles and practice. St. Louis: Mosby, 1998: 168–82Google Scholar
  19. 19.
    Kragballe K, Desjarlais L, Voorhees JJ. Leukotrienes B4, C4 and D4 stimulate DNA synthesis in cultured human epidermal keratinocytes. Br J Dermatol 1985; 113: 43–52PubMedCrossRefGoogle Scholar
  20. 20.
    Muller A, Michel L, Basset-Seguin N, et al. Characterization of specific leukotriene C4 binding sites on cultured human keratinocytes. Br J Dermatol 1988; 119: 275–80PubMedCrossRefGoogle Scholar
  21. 21.
    Reusch MK, Wastek GJ. Human keratinocytes in vitro have receptors for leukotriene B4. Acta Derm Venereol 1989; 69: 429–31PubMedGoogle Scholar
  22. 22.
    Andoh T, Kuraishi Y. Intradermal leukotriene B4, but not prostaglandin E2, induces itch-associated responses in mice. Eur J Pharmacol 1998; 353: 93–6PubMedCrossRefGoogle Scholar
  23. 23.
    MacGlashan DW Jr D, Schleimer RP, Peters SP, et al. Generation of leukotrienes by purified human lung mast cells. J Clin Invest 1982; 70: 747–51PubMedCrossRefGoogle Scholar
  24. 24.
    Du JT, Foegh M, Maddox Y, et al. Human peritoneal macrophages synthesize leukotrienes B4 and C4. Biochim Biophys Acta 1983; 753: 159–63PubMedCrossRefGoogle Scholar
  25. 25.
    Radeau T, Godard P, Chavis C, et al. Effect of nedocromil sodium on sulfidoleukopeptide leukotrienes-stimulated human alveolar macrophages in asthma. Pulm Pharmacol 1993; 6: 27–31PubMedCrossRefGoogle Scholar
  26. 26.
    Fiore S, Serhan CN. Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils. J Exp Med 1990; 172: 1451–7PubMedCrossRefGoogle Scholar
  27. 27.
    Yokomizo T, Izumi T, Chang K, et al. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 1997; 387: 620–4PubMedCrossRefGoogle Scholar
  28. 28.
    Yokomizo T, Kato K, Terawaki K, et al. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 2000; 192: 421–32PubMedCrossRefGoogle Scholar
  29. 29.
    Michel L, Dubertret L. Leukotriene B4 and platelet-activating factor in human skin. Arch Dermatol Res 1992; 284: S12–7PubMedCrossRefGoogle Scholar
  30. 30.
    Camps RDR, Coutts AA, Greaves MW, et al. Responses of human skin to intradermal injection of leukotrienes C4, D4, and B4. Br J Pharmacol 1983; 80: 497–502CrossRefGoogle Scholar
  31. 31.
    Williams TJ, Piper PJ. The action of chemically pure SRS-A on the microcirculation in vitro. Prostaglandins 1980; 19: 779–86PubMedCrossRefGoogle Scholar
  32. 32.
    Soter NA, Lewis RA, Corey EJ, et al. Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin. J Invest Dermatol 1983; 80: 115–9PubMedCrossRefGoogle Scholar
  33. 33.
    Bisgaard H, Lerche A, Kristensen JK. Leukotriene- and histamine-induced increases in vascular permeability and interstitial transport in the skin. J Invest Dermatol 1985; 84: 427–9PubMedCrossRefGoogle Scholar
  34. 34.
    Maxwell DL, Atkinson BA, Spur BW, et al. Skin responses to intradermal histamine and leukotrienes C4, D4, and E4 in patients with chronic idiopathic urticaria and in normal subjects. J Allergy Clin Immunol 1990; 86: 759–65PubMedCrossRefGoogle Scholar
  35. 35.
    Talbot SF, Atkins PC, Goetzl EJ, et al. Accumulation of leukotriene C4 and histamine in human allergic skin reactions. J Clin Invest 1985; 76: 650–6PubMedCrossRefGoogle Scholar
  36. 36.
    Panettieri RA, Tan EM, Ciocca V, et al. Effect of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 1998; 19: 453–61PubMedGoogle Scholar
  37. 37.
    Yamaya M, Sekizawa K, Yamauchi K, et al. Epithelial modulation of leukotriene-C4-induced human tracheal smooth muscle contraction. Am J Respir Crit Care Med 1995; 151: 892–4PubMedGoogle Scholar
  38. 38.
    Kane GC, Pollice M, Kim CJ, et al. A controlled trial of the effect of the 5-lipoxygenase inhibitor, zileuton, on lung inflammation produced by segmental antigen challenge in human beings. J Allergy Clin Immunol 1996; 97: 646–54PubMedCrossRefGoogle Scholar
  39. 39.
    Morelli JG, Yohn JJ, Lyons MB, et al. Leukotrienes C4 and D4 as potent mitogens for cultured human neonatal melanocytes. J Invest Dermatol 1989; 93: 719–22PubMedCrossRefGoogle Scholar
  40. 40.
    Shaw RJ, Walsh GM, Cromwell O, et al. Activated human eosinophils generate SRS-A leukotrienes for IgG-dependent stimulation. Nature 1985; 316: 150–2PubMedCrossRefGoogle Scholar
  41. 41.
    Weller PF, Lee CW, Foster DW, et al. Generation and metabolism of 5-lipoxygenase pathway leukotrienes in human eosinophils: predominant production of leukotriene C4. Proc Natl Acad Sci U S A 1983; 80: 7626–30PubMedCrossRefGoogle Scholar
  42. 42.
    Lynch KR, O’Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999; 399: 789–93PubMedCrossRefGoogle Scholar
  43. 43.
    Dahlen B, Zetterstrom O, Bjorck T, et al. The leukotriene-antagonist ICI-204,219 inhibits the early airway reaction to cumulative bronchial challenge with allergen in atopic asthmatics. Eur Respir J 1994; 7: 324–31PubMedCrossRefGoogle Scholar
  44. 44.
    Leung DY, Soter NA. Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol 2001; 44: Sl–12CrossRefGoogle Scholar
  45. 45.
    Ikai K, Imamura S. Role of eicosanoids in the pathogenesis of atopic dermatitis. Prostaglandins Leukot Essent Fatty Acids 1993; 48: 409–16PubMedCrossRefGoogle Scholar
  46. 46.
    Neuber K, Hilger RA, Konig W. Interleukin-3, interleukin-8, FMLP and C5a enhance the release of leukotrienes from neutrophils of patients with atopic dermatitis. Immunology 1991; 73: 83–7PubMedGoogle Scholar
  47. 47.
    Shimizu T, Kristjansson S, Wennergren G, et al. Leukotriene B4 and C4 generation by blood leukocytes after ex vivo stimulation by Ca-ionophore and opsonized zymosan in children with atopic dermatitis. Pediatr Allergy Immunol 1994; 5: 95–9PubMedCrossRefGoogle Scholar
  48. 48.
    Ruzicka T, Ring J. Enhanced releasability of prostaglandin E2 and leukotrienes B4 and C4 from leukocytes of patients with atopic eczema. Acta Derm Venereol 1987; 67(6): 469–75PubMedGoogle Scholar
  49. 49.
    Fauler J, Neumann C, Tsikas D, et al. Enhanced synthesis of cysteinyl leukotrienes in atopic dermatitis. Br J Dermatol 1993; 128: 627–30PubMedCrossRefGoogle Scholar
  50. 50.
    Sansom JE, Taylor GW, Dollery CT, et al. Urinary leukotriene E4 levels in patients with atopic dermatitis. Br J Dermatol 1997; 136: 790–1PubMedCrossRefGoogle Scholar
  51. 51.
    Fogh K, Herlin T, Kragballe K. Eicosanoids in skin of patients with atopic dermatitis: prostaglandin E2 and leukotriene B4 are present in biologically active concentrations. J Allergy Clin Immunol 1989; 83: 450–5PubMedCrossRefGoogle Scholar
  52. 52.
    Thorsen S, Fogh K, Broby-Johansen U, et al. Leukotriene B4 in atopic dermatitis: increased skin levels and altered sensitivity of peripheral blood T-cells. Allergy 1990; 45: 457–63PubMedCrossRefGoogle Scholar
  53. 53.
    Meier F, Gross E, Klotz KN, et al. Leukotriene B4 receptors on neutrophils in patients with psoriasis and atopic eczema. Skin Pharmacol 1989; 2: 61–7PubMedCrossRefGoogle Scholar
  54. 54.
    Chari S, Clark-Loeser L, Shupack J, et al. A role for leukotriene antagonists in atopic dermatitis? Am J Clin Dermatol 2001; 2: 1–6PubMedCrossRefGoogle Scholar
  55. 55.
    Ortonne JP. Recent developments in the understanding of the pathogenesis of psoriasis. Br J Dermatol 1999; 140: 1–7PubMedCrossRefGoogle Scholar
  56. 56.
    Brain S, Camp R, Dowd P, et al. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol 1984; 83: 70–3PubMedCrossRefGoogle Scholar
  57. 57.
    Schröder JM. Inflammatory mediators and chemoattractants. Clin Dermatol 1995; 13: 137–50PubMedCrossRefGoogle Scholar
  58. 58.
    Camp R, Jones RR, Brain S, et al. Production of intraepidermal microabscesses by topical application of leukotriene B4. J Invest Dermatol 1984; 82: 202–4PubMedCrossRefGoogle Scholar
  59. 59.
    De Jong EM, van Erp PEJ, van Vlijmen IMJ, et al. The interrelation between inflammation and epidermal proliferation in normal skin following epicutaneous application of leukotriene-B4 — an immunohistochemical study. Clin Exp Dermatol 1992; 17: 413–20PubMedCrossRefGoogle Scholar
  60. 60.
    Ford-Hutchinson AW, Rackman A. Leukotrienes as mediators of skin inflammation. Br J Dermatol 1983; 109: 26–9PubMedCrossRefGoogle Scholar
  61. 61.
    Fauler J, Neumann C, Tsikas D, et al. Enhanced synthesis of cysteinyl leukotrienes in psoriasis. J Invest Dermatol 1992; 99: 8–11PubMedCrossRefGoogle Scholar
  62. 62.
    Izaki S, Yamamoto T, Goto Y, et al. Platelet-activating factor and arachidonic acid metabolites in psoriatic inflammation. Br J Dermatol 1996; 134: 1060–4PubMedCrossRefGoogle Scholar
  63. 63.
    Kawana S, Nishiyama S. Pustular psoriasis and aseptic purulent arthritis: possible role of leukotrienes B4 and C4 in a flare of synovitis. Dermatology 1995; 190: 35–8PubMedCrossRefGoogle Scholar
  64. 64.
    Stuning M, Schultz-Ehrenburg U, Altmeyer P, et al. Metabolism of [su14C]arachidonic acid by polymorphonuclear leukocytes in patients with psoriasis. Br J Dermatol 1987; 116: 153–9PubMedCrossRefGoogle Scholar
  65. 65.
    Iversen L, Deleuran B, Hoberg AM, et al. LTA4 hydrolase in human skin: decreased activity but normal concentration in lesional psoriatic skin. Arch Dermatol Res 1996; 288: 217–24PubMedCrossRefGoogle Scholar
  66. 66.
    Wedi B, Wagner S, Werfel T, et al. Prevalence of Helicobacter pylori associated gastritis in chronic urticaria. Int Arch Allergy Immunol 1998; 116: 288–94PubMedCrossRefGoogle Scholar
  67. 67.
    Greaves MW, O’Donnell BF. Not all chronic urticaria is ‘idiopathic’! Exp Dermatol 1998; 7: 11–3Google Scholar
  68. 68.
    Juhlin L, Hammarstrom S. Wheal reactions in human skin after injection of leukotrienes B4, C4, D4 and E4. Prostaglandins Leukot Med l983; 11: 381–3CrossRefGoogle Scholar
  69. 69.
    Maltby NH, Ind PW, Causon RC, et al. Leukotriene E4 release in cold urticaria. Clin Exp Allergy 1989; 19: 33–6PubMedCrossRefGoogle Scholar
  70. 70.
    Wedi B, Kapp A. Aspirin-induced adverse skin reactions: New pathophysiological aspects. Thorax 2000; 55: S70–1PubMedCrossRefGoogle Scholar
  71. 71.
    Czech W, Schöpf E, Kapp A. Release of sulfidoleukotrienes in vitro: its relevance in the diagnosis of pseudoallergy to acetylsalicylic acid. Inflamm Res 1995; 44: 291–5PubMedCrossRefGoogle Scholar
  72. 72.
    Szczeklik A. Mechanism of aspirin-induced asthma. Allergy 1997; 52: 613–9PubMedCrossRefGoogle Scholar
  73. 73.
    Christie PE, Tagari P, Ford-Hutchinson AW, et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 1991; 143: 1025–9PubMedGoogle Scholar
  74. 74.
    Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1996; 101: 1–13Google Scholar
  75. 75.
    Schmid M, Gode U, Schafer D, et al. Arachidonic acid metabolism in nasal tissue and peripheral blood cells in aspirin intolerant asthmatics. Acta Otolaryngol 1999; 119(2): 277–80PubMedCrossRefGoogle Scholar
  76. 76.
    Szczeklik A, Sanak M. Genetic mechanisms in aspirin-induced asthma. Am J Respir Crit Care Med 2000; 161: S142–6PubMedGoogle Scholar
  77. 77.
    Kawana S, Ueno A, Nishiyama S. Increased levels of immuno-reactive leukotriene B4 in blister fluids of bullous pemphigoid patients and effects of a selective 5-lipoxygenase inhibitor on experimental skin lesions. Acta Derm Venereol 1990; 70: 281–5PubMedGoogle Scholar
  78. 78.
    Hackshaw KV, Voelkel NF, Thomas RB, et al. Urine leukotriene E4 levels are elevated in patients with active systemic lupus erythematosus. J Rheumatol 1992; 19: 252–8PubMedGoogle Scholar
  79. 79.
    Lau CS, O’Dowd A, Belch JJ. White blood cell activation in Raynaud’s phenomenon of systemic sclerosis and vibration induced white finger syndrome. Ann Rheum Dis 1992; 51: 249–52PubMedCrossRefGoogle Scholar
  80. 80.
    Willemsen MA, de Jong JG, van Domburg PH, et al. Defective inactivation of leukotriene B4 in patients with Sjogren-Larsson syndrome. J Pediatr 2000; 136: 258–60PubMedCrossRefGoogle Scholar
  81. 81.
    Hamasaki Y, Miyazaki S. Leukotriene B4 and Kawasaki disease. Acta Paediatr Jpn 1991; 33: 771–7PubMedCrossRefGoogle Scholar
  82. 82.
    Mayatepek E, Lehmann WD. Increased generation of cysteinyl leukotrienes in Kawasaki disease. Arch Dis Child 1995; 72: 526–7PubMedCrossRefGoogle Scholar
  83. 83.
    Newburger JW, Burns JC. Kawasaki disease. Vasc Med 1999; 4: 187–202PubMedGoogle Scholar
  84. 84.
    Kaler SG. Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr Dev Pathol 1998; 1: 85–98PubMedCrossRefGoogle Scholar
  85. 85.
    Kodama H, Murata Y. Molecular genetics and pathophysiology of Menkes disease. Pediatr Int 1999; 41: 430–5PubMedCrossRefGoogle Scholar
  86. 86.
    Wenzel SE, Kamada AK. Zileuton: the first 5-lipoxygenase inhibitor for the treatment of asthma. Ann Pharmacother 1996; 30: 858–64PubMedGoogle Scholar
  87. 87.
    Zhu YI, Stiller MJ. Preview of potential therapeutic applications of leukotriene B4 inhibitors in dermatology. Skin Pharmacol Appl Skin Physiol 2000; 13: 235–45PubMedCrossRefGoogle Scholar
  88. 88.
    Tsuji F, Miyake Y, Enomoto H, et al. Effects of SA6541, a leukotriene A4 hydrolase inhibitor, and indomethacin on carrageenan-induced murine dermatitis. Eur J Pharmacol 1998; 346: 81–5PubMedCrossRefGoogle Scholar
  89. 89.
    Kristensen M, Jinquan T, Thomsen MK, et al. ETH615, a synthetic inhibitor of leukotriene biosynthesis and function, also inhibits the production of and biological responses towards interleukin-8. Exp Dermatol 1993; 2: 165–70PubMedCrossRefGoogle Scholar
  90. 90.
    Van Pelt JP, De Jong EM, Scijer MM, et al. Investigation of a novel and specific leukotriene B4 receptor antagonist in the treatment of stable plaque psoriasis. Br J Dermatol 1998; 139: 396–402PubMedCrossRefGoogle Scholar
  91. 91.
    Seegers BA, Andriessen MP, van Hooijkonk CA, et al. Pharmacological effects of a specific leukotriene B(4) receptor antagonist (VML 295) on blood leukocytes, cutaneous inflammation and epidermal proliferation. Skin Pharmacol Appl Skin Physiol 2000; 13: 75–85PubMedCrossRefGoogle Scholar
  92. 92.
    Marder P, Sawyer JS, Froelich LL, et al. Blockade of human neutrophil activation by 2-[2-propyl-3-3-2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzo ic acid (LY 293111), a novel leukotriene B4 receptor antagonist. Biochem Pharmacol 1995; 49: 1683–90PubMedCrossRefGoogle Scholar
  93. 93.
    Simons FER, Johnston L, Gu X, et al. Suppression of the early and late cutaneous allergic responses using fexofenadine and montelukast. Ann Allergy Asthma Immunol 2001; 86: 44–50PubMedCrossRefGoogle Scholar
  94. 94.
    Woodmansee DP, Simon RA. A pilot study examining the role of zileuton in atopic dermatitis. Ann Allergy Asthma Immunol 1999; 83: 548–52PubMedCrossRefGoogle Scholar
  95. 95.
    Carucci JA, Washenik K, Weinstein A, et al. The leukotriene antagonist zafirlukast as a therapeutic agent for atopic dermatitis. Arch Dermatol 1998; 134: 785–6PubMedCrossRefGoogle Scholar
  96. 96.
    De Jong EM, van Vlijmen IM, Scholte JC, et al. Clinical and biochemical effects of an oral leukotriene biosynthesis inhibitor (MK886) in psoriasis. Skin Pharmacol 1991; 4: 278–85PubMedCrossRefGoogle Scholar
  97. 97.
    Degreef H, Dockx P, De Doncker P, et al. A double-blind vehicle-controlled study of R 68 151 in psoriasis: a topical 5-lipoxygenase inhibitor. J Am Acad Dermatol 1990; 22: 751–5PubMedCrossRefGoogle Scholar
  98. 98.
    van de Kerkhof PC, Van Pelt H, Lucker GP, et al. Topical R-85355, a potent and selective 5-lipoxygenase inhibitor, fails to improve psoriasis. Skin Pharmacol 1996; 9: 307–11PubMedCrossRefGoogle Scholar
  99. 99.
    Mommers JM, Van Rossum MM, Kooijmans-Otero ME, et al. VML 295 (LY-293111), a novel LTB4 antagonist, is not effective in the prevention of relapse in psoriasis. Br J Dermatol 2000; 142: 259–66PubMedCrossRefGoogle Scholar
  100. 100.
    Ellis MH. Successful treatment of chronic urticaria with leukotriene antagonists. J Allergy Clin Immunol 1998; 102: 876–7PubMedCrossRefGoogle Scholar
  101. 101.
    Spector S, Tan RA. Antileukotrienes in chronic urticaria [letter]. J Allergy Clin Immunol 1998; 101: 572PubMedCrossRefGoogle Scholar
  102. 102.
    Berkun Y, Shalit M. Successful treatment of delayed pressure urticaria with montelukast. Allergy 2000; 55(2): 203–4PubMedCrossRefGoogle Scholar
  103. 103.
    Hani N, Hartmann K, Casper C, et al. Improvement of cold urticaria by treatment with the leukotriene receptor antagonist montelukast [letter]. Acta Derm Venereol 2000; 80: 229PubMedCrossRefGoogle Scholar
  104. 104.
    Asero R. Leukotriene receptor antagonists may prevent NSAID-induced exacerbations in patients with chronic urticaria. Ann Allergy Asthma Immunol 2000; 85: 156–7PubMedCrossRefGoogle Scholar
  105. 105.
    Ohnishi-Inoue Y, Mitsuya K, Horio T. Aspirin-sensitive urticaria: provocation with a leukotriene receptor antagonist. Br J Dermatol 1998; 138: 483–5PubMedCrossRefGoogle Scholar
  106. 106.
    Yanase DJ, David-Bajar KM. The leukotriene antagonist montelukast as a therapeutic agent for atopic dermatitis [abstract]. 58th Annual Meeting of the American Academy of Dermatology; 2000 Mar 10–15; San Francisco, CA. American Academy of Dermatology, 2000Google Scholar
  107. 107.
    MacDowell-Carneiro AL, Hassan MH, Cotronei-Cascardo C, et al. Use of a leukotriene inhibitor in the treatment of chronic urticaria [abstract no. P117]. Ann Allergy Asthma Immunol 1999; 82: 113Google Scholar
  108. 108.
    Norris JG, Sullivan TJ. Leukotrienes and cytokines in steroid-dependent chronic urticaria [abstract no. P138]. Ann Allergy Asthma Immunol 1998; 80: 134Google Scholar
  109. 109.
    Chiu TJ, Warren MS. Zafirlukast (Accolate) in the treatment of chronic idiopathic urticaria 3 a case series [abstract]. J Allergy Clin Immunol 1998; 101 (Suppl.): S155Google Scholar
  110. 110.
    Asero R, Lorini M, Tedeschi A. Chronic unremitting urticaria: which patients respond to leukotriene receptor antagonists? [abstract no. 93]. Allergy 2001; 56Suppl. 68: 32Google Scholar
  111. 111.
    Reimers AR, Pichler C, Helblig A, et al. Treatment of chronic urticaria with zafirlukast. A double-blind, placebo-controlled cross-over study on 46 patients [abstract no. 455]. Allergy 2001; 56Suppl. 68: 149Google Scholar
  112. 112.
    Willemsen MA, Rotteveel JJ, Steijlen PM, et al. 5-lipoxygenase inhibition: a new treatment strategy for Sjogren-Larsson syndrome. Neuropediatrics 2000; 31: 1–3PubMedCrossRefGoogle Scholar
  113. 113.
    Bjorneboe A, Smith AK, Bjorneboe GEA, et al. Effect of dietary supplementation with eicosapentaenoic acid in the treatment of atopic dermatitis. Br J Dermatol 1987; 118: 77–83CrossRefGoogle Scholar
  114. 114.
    MacDowell-Carneiro AL, Hurtado RC, Bellanti JA. Improvement of atopic eczema with a leukotriene inhibitor: a new therapeutic use? [abstract no. P78]. Ann Allergy Asthma Immunol 1998; 80: 119Google Scholar
  115. 115.
    Bensch G, Borish L. Leukotriene modifiers in chronic urticaria. Ann Allergy Asthma Immunol 1999; 83: 348PubMedCrossRefGoogle Scholar
  116. 116.
    Israel E, Fischer AR, Rosenberg MA, et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148: 1447–51PubMedCrossRefGoogle Scholar
  117. 117.
    Leff JA, Busse WW, Pearlman D, et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 1998; 339: 147–52PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  1. 1.Department of Dermatology and AllergologyHannover Medical UniversityHannoverGermany

Personalised recommendations