Skip to main content
Log in

Gene Therapy for Colorectal Cancer

Therapeutic Potential

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Colorectal cancer is a leading cause of cancer mortality in Western countries. Gene therapy has been proposed as a potential novel treatment modality for colorectal cancer, but it is still in an early stage of development. The preclinical data have been promising and numerous clinical trials are underway. This brief review aims to summarise the current status of clinical trials of different gene therapy strategies, including immune stimulation, mutant gene correction, prodrug activation and oncolytic virus therapy, for patients with colorectal cancer. Data from phase I trials have proven the safety of the reagents but have not yet demonstrated significant therapeutic benefit. In order to achieve this and extend the scope of the treatment, continuing efforts should be made to improve the antitumour potency, efficiency of gene delivery and accuracy of gene targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table II

Similar content being viewed by others

References

  1. Midgley R, Kerr D. Colorectal cancer. Lancet 1999; 353(9150): 391–9

    Article  PubMed  CAS  Google Scholar 

  2. Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer 2000; 88(10): 2398–424

    Article  PubMed  CAS  Google Scholar 

  3. The Cancer Research Campaign. CRC CancerStats: large bowel. London, UK, Nov 1999: 3–4. Also available from: http://www.crc.org.uk

  4. Sobol RE, Scanlon KJ, editors. Internet book of gene therapy — cancer therapeutics. Connecticut: Appleton & Lange, 1995: section III

    Google Scholar 

  5. Culver KW, editor. Gene therapy — a primer for physicians. 2nd ed. New York: Mary Ann Liebert, Inc., 1996: appendix B

    Google Scholar 

  6. Reid T, Rubin J, Galanis E, et al. Hepatic artery infusion of ONYX-015 in combination with 5-FU/leukovorin for meta-static gastrointestinal cancer metastasis to liver: a phaseI/II study [abstract]. Clin Cancer Res 1999; 5 Suppl.: 3798s

    Google Scholar 

  7. National Institutes of Health. http://cancertrials.nci.nih.gov [accessed 2000 Oct 31]

  8. National Institutes of Health. http://www4.od.nih.gov/oba [accessed 2000 Oct 31]

  9. Ostrand-Rosenberg S, Thakur A, Clements V. Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol 1990; 144(10): 4068–71

    PubMed  CAS  Google Scholar 

  10. Nabel GJ, Nabel EG, Yang ZY, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 1993; 90(23): 11307–11

    Article  PubMed  CAS  Google Scholar 

  11. Rubin J, Galanis E, Pitot HC, et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Ther 1997; 4(5): 419–25

    Article  PubMed  CAS  Google Scholar 

  12. Bubenik J, Den Otter W, Huland E. Local cytokine therapy of cancer: interleukin-2, interferons and related cytokines. Cancer Immunol Immunother 2000; 49(2): 116–22

    Article  PubMed  CAS  Google Scholar 

  13. Fakhrai H, Shawler DL, Gjerset R, et al. Cytokine gene therapy with interleukin-2-transduced fibroblasts: effects of IL-2 dose on anti-tumor immunity. Human Gene Ther 1995; 6(5): 591–601

    Article  CAS  Google Scholar 

  14. Sobol RE, Shawler DL, Carson C, et al. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study. Clin Cancer Res 1999; 5(9): 2359–65

    PubMed  CAS  Google Scholar 

  15. Foon KA, John WJ, Chakraborty M, et al. Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 1999; 17(9): 2889–5

    PubMed  CAS  Google Scholar 

  16. Kass E, Schlom J, Thompson J, et al. Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus. Cancer Res 1999; 59(3): 676–83

    PubMed  CAS  Google Scholar 

  17. Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995; 87(13): 982–90

    Article  PubMed  CAS  Google Scholar 

  18. Conry RM, Khazaeli MB, Saleh MN, et al. Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 1999; 5(9): 2330–7

    PubMed  CAS  Google Scholar 

  19. Conry RM, Allen KO, Lee S, et al. Human autoantibodies to carcinoembryonic antigen (CEA) induced by a vaccinia-CEA vaccine. Clin Cancer Res 2000; 6(1): 34–41

    PubMed  CAS  Google Scholar 

  20. Hodge JW, McLaughlin JP, Kantor JA, et al. Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 1997; 15(6–7): 759–68

    Article  PubMed  CAS  Google Scholar 

  21. Fries LF, Tartaglia J, Taylor J, et al. Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: an alternative poxvirus vector system. Vaccine 1996; 14(5): 428–34

    Article  PubMed  CAS  Google Scholar 

  22. Marshall JL, Hawkins MJ, Tsang KY, et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 1999; 17(1): 332–7

    PubMed  CAS  Google Scholar 

  23. Zhu MZ, Marshall J, Cole D, et al. Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res 2000; 6(1): 24–33

    PubMed  CAS  Google Scholar 

  24. Bodey B, Bodey Jr B, Siegel SE, et al. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res 2000; 20(4): 2665–76

    PubMed  CAS  Google Scholar 

  25. Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Ann Rev Immunol 2000; 18: 245–73

    Article  CAS  Google Scholar 

  26. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67

    Article  PubMed  CAS  Google Scholar 

  27. Harris MP, Sutjipto S, Wills KN, et al. Adenovirus-mediated p53 gene transfer inhibits growth of human tumor cells expressing mutant p53 protein. Cancer Gene Ther 1996; 3(2): 121–30

    PubMed  CAS  Google Scholar 

  28. Bouvet M, Ellis LM, Nishizaki M, et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 1998; 58(11): 2288–92

    PubMed  CAS  Google Scholar 

  29. Sakakura C, Hagiwara A, Tsujimoto H, et al. Inhibition of colon cancer cell proliferation by antisense oligonucleotides targeting the messenger RNA of the Ki-ras gene. AntiCancer Drugs 1995; 6(4): 553–61

    Article  PubMed  CAS  Google Scholar 

  30. Venook AP, Bergsland EK, Ring E, et al. Gene therapy of colorectal liver metastasis using recombinant adenovirus encoding wt p53 (SCH 58500) via hepatic artery infusion: a phase I study. Proc Am Soc Clin Oncol 1998; 17(1661): 431c

    Google Scholar 

  31. Cohen AM, Kemeny NE, Kohne CH, et al. Is intra-arterial chemotherapy worthwhile in the treatment of patients with unresectable hepatic colorectal cancer metastases? Eur J Cancer 1996; 32A(13): 2195–205

    Article  PubMed  CAS  Google Scholar 

  32. Huber BE, Austin EA, Richards CA, et al. Metabolism of 5-fluorocytosineto 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91(17): 8302–6

    Article  PubMed  CAS  Google Scholar 

  33. Bridgewater JA, Knox RJ, Pitts JD, et al. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Human Gene Ther 1997; 8(6): 709–17

    Article  CAS  Google Scholar 

  34. Touraine RL, Ishii-Morita H, Ramsey WJ, et al. The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther 1998; 5(12): 1705–11

    Article  PubMed  CAS  Google Scholar 

  35. Link Jr CJ, Levy JP, McCann LZ, et al. Gene therapy for colon cancer with the herpes simplex thymidine kinase gene. J Surg Oncol 1997; 64(4): 289–94

    Article  PubMed  CAS  Google Scholar 

  36. Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Med 1997; 3(12): 1354–61

    Article  PubMed  CAS  Google Scholar 

  37. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Human Gene Ther 1999; 10(7): 1239–49

    Article  CAS  Google Scholar 

  38. Crystal RG, Hirschowitz E, Lieberman M, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Human Gene Ther 1997; 8(8): 985–1001

    Article  CAS  Google Scholar 

  39. Green NK, Youngs DJ, Neoptolemos JP, et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther 1997; 4(4): 229–38

    PubMed  CAS  Google Scholar 

  40. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274(5286): 373–6

    Article  PubMed  CAS  Google Scholar 

  41. Rothmann T, Hengstermann A, Whitaker NJ, et al. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72(12): 9470–8

    PubMed  CAS  Google Scholar 

  42. Ries SJ, Brandts CH, Chung AS, et al. Loss of p 14ARF in tumor cells facilitates replication of the adenovirus mutant dl 1520 (ONYX-015). Nature Med 2000; 6(10): 1123–33

    Google Scholar 

  43. Habib N, Kelly MD, Zhao J, et al. E1B-deleted adenovirus gene therapy for liver tumors (conference abstract of First International Meeting on Cancer Gene Therapy, London). Cancer Gene Ther 1999; 6(4): 389

    Google Scholar 

  44. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med 2000; 6(8): 879–85

    Article  PubMed  CAS  Google Scholar 

  45. Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and systemic anti-tumoral efficacy. Nature Med 2000; 6(10): 1134–9

    Article  PubMed  CAS  Google Scholar 

  46. Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–5

    Article  PubMed  CAS  Google Scholar 

  47. Wildner O, Blaese RM, Morris JC. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59(2): 410–3

    PubMed  CAS  Google Scholar 

  48. Rogulski KR, Wing MS, Paielli DL, et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Human Gene Ther 2000; 11(1): 67–76

    Article  CAS  Google Scholar 

  49. Heise C, Sampson-Johannes A, Williams A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med 1997; 3(6): 639–45

    Article  PubMed  CAS  Google Scholar 

  50. Wildner O, Blaese RM, Morris JC. Synergy between the herpes simplex virus tk/ganciclovir prodrug suicide system and the topoisomerase I inhibitor topotecan. Human Gene Ther 1999; 10(16): 2679–87

    Article  CAS  Google Scholar 

  51. Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene Therapy 2000; 7 (1): 2–8

    Google Scholar 

  52. Miller N, Whelan J. Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Human Gene Ther 1997; 8(7): 803–15

    Article  CAS  Google Scholar 

  53. Yoon SS, Nakamura H, Carroll NM, et al. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 2000; 14(2): 301–11

    PubMed  CAS  Google Scholar 

  54. Hardy S, Kitamura M, Harris-Stansil T, et al. Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71(3): 1842–9

    PubMed  CAS  Google Scholar 

  55. Reynolds PN, Feng M, Curiel DT. Chimeric viral vectors — the best of both worlds? Mol Med Today 1999; 5(1): 25–31

    Article  PubMed  CAS  Google Scholar 

  56. Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 1999; 6(2): 113–38

    Article  PubMed  CAS  Google Scholar 

  57. Alemany R, Lai S, Lou YC, et al. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999; 6(1): 21–5

    Article  PubMed  CAS  Google Scholar 

  58. Shand N, Weber F, Mariani L, et al. Aphase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Human Gene Ther 1999; 10(14): 2325–35

    Article  CAS  Google Scholar 

  59. Labow D, Lee S, Ginsberg RJ, et al. Adenovirus vector-mediated gene transfer to regional lymph nodes. Human Gene Ther 2000; 11(5): 759–69

    Article  CAS  Google Scholar 

  60. Gunji Y, Tasaki K, Tagawa M, et al. Inhibition of peritoneal dissemination of murine colon carcinoma cells by administrating retrovirus harboring IL-2 gene. Cancer Gene Ther 1998; 5(6): 339–43

    PubMed  CAS  Google Scholar 

  61. Tjuvajev JG, Chen SH, Joshi A, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999; 59(20): 5186–93

    PubMed  CAS  Google Scholar 

  62. Bartlett JS, Samulski RJ. Fluorescent viral vectors: a new technique for the pharmacological analysis of gene therapy. Nature Med 1998; 4(5): 635–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MJ., Chung-Faye, G.A., Searle, P.F. et al. Gene Therapy for Colorectal Cancer. BioDrugs 15, 357–367 (2001). https://doi.org/10.2165/00063030-200115060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200115060-00002

Keywords

Navigation