, Volume 15, Issue 6, pp 357–367 | Cite as

Gene Therapy for Colorectal Cancer

Therapeutic Potential
  • Ming-Jen ChenEmail author
  • Guy A. Chung-Faye
  • Peter F. Searle
  • Lawrence S. Young
  • David J. Kerr
Leading Article


Colorectal cancer is a leading cause of cancer mortality in Western countries. Gene therapy has been proposed as a potential novel treatment modality for colorectal cancer, but it is still in an early stage of development. The preclinical data have been promising and numerous clinical trials are underway. This brief review aims to summarise the current status of clinical trials of different gene therapy strategies, including immune stimulation, mutant gene correction, prodrug activation and oncolytic virus therapy, for patients with colorectal cancer. Data from phase I trials have proven the safety of the reagents but have not yet demonstrated significant therapeutic benefit. In order to achieve this and extend the scope of the treatment, continuing efforts should be made to improve the antitumour potency, efficiency of gene delivery and accuracy of gene targeting.


Onyx Oncolytic Virus Cytosine Deaminase Recombinant Vaccinia Virus Oncolytic Adenovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Midgley R, Kerr D. Colorectal cancer. Lancet 1999; 353(9150): 391–9PubMedCrossRefGoogle Scholar
  2. 2.
    Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer 2000; 88(10): 2398–424PubMedCrossRefGoogle Scholar
  3. 3.
    The Cancer Research Campaign. CRC CancerStats: large bowel. London, UK, Nov 1999: 3–4. Also available from:
  4. 4.
    Sobol RE, Scanlon KJ, editors. Internet book of gene therapy — cancer therapeutics. Connecticut: Appleton & Lange, 1995: section IIIGoogle Scholar
  5. 5.
    Culver KW, editor. Gene therapy — a primer for physicians. 2nd ed. New York: Mary Ann Liebert, Inc., 1996: appendix BGoogle Scholar
  6. 6.
    Reid T, Rubin J, Galanis E, et al. Hepatic artery infusion of ONYX-015 in combination with 5-FU/leukovorin for meta-static gastrointestinal cancer metastasis to liver: a phaseI/II study [abstract]. Clin Cancer Res 1999; 5 Suppl.: 3798sGoogle Scholar
  7. 7.
    National Institutes of Health. [accessed 2000 Oct 31]
  8. 8.
    National Institutes of Health. [accessed 2000 Oct 31]
  9. 9.
    Ostrand-Rosenberg S, Thakur A, Clements V. Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol 1990; 144(10): 4068–71PubMedGoogle Scholar
  10. 10.
    Nabel GJ, Nabel EG, Yang ZY, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 1993; 90(23): 11307–11PubMedCrossRefGoogle Scholar
  11. 11.
    Rubin J, Galanis E, Pitot HC, et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Ther 1997; 4(5): 419–25PubMedCrossRefGoogle Scholar
  12. 12.
    Bubenik J, Den Otter W, Huland E. Local cytokine therapy of cancer: interleukin-2, interferons and related cytokines. Cancer Immunol Immunother 2000; 49(2): 116–22PubMedCrossRefGoogle Scholar
  13. 13.
    Fakhrai H, Shawler DL, Gjerset R, et al. Cytokine gene therapy with interleukin-2-transduced fibroblasts: effects of IL-2 dose on anti-tumor immunity. Human Gene Ther 1995; 6(5): 591–601CrossRefGoogle Scholar
  14. 14.
    Sobol RE, Shawler DL, Carson C, et al. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study. Clin Cancer Res 1999; 5(9): 2359–65PubMedGoogle Scholar
  15. 15.
    Foon KA, John WJ, Chakraborty M, et al. Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 1999; 17(9): 2889–5PubMedGoogle Scholar
  16. 16.
    Kass E, Schlom J, Thompson J, et al. Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus. Cancer Res 1999; 59(3): 676–83PubMedGoogle Scholar
  17. 17.
    Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995; 87(13): 982–90PubMedCrossRefGoogle Scholar
  18. 18.
    Conry RM, Khazaeli MB, Saleh MN, et al. Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 1999; 5(9): 2330–7PubMedGoogle Scholar
  19. 19.
    Conry RM, Allen KO, Lee S, et al. Human autoantibodies to carcinoembryonic antigen (CEA) induced by a vaccinia-CEA vaccine. Clin Cancer Res 2000; 6(1): 34–41PubMedGoogle Scholar
  20. 20.
    Hodge JW, McLaughlin JP, Kantor JA, et al. Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 1997; 15(6–7): 759–68PubMedCrossRefGoogle Scholar
  21. 21.
    Fries LF, Tartaglia J, Taylor J, et al. Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: an alternative poxvirus vector system. Vaccine 1996; 14(5): 428–34PubMedCrossRefGoogle Scholar
  22. 22.
    Marshall JL, Hawkins MJ, Tsang KY, et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 1999; 17(1): 332–7PubMedGoogle Scholar
  23. 23.
    Zhu MZ, Marshall J, Cole D, et al. Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res 2000; 6(1): 24–33PubMedGoogle Scholar
  24. 24.
    Bodey B, Bodey Jr B, Siegel SE, et al. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res 2000; 20(4): 2665–76PubMedGoogle Scholar
  25. 25.
    Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Ann Rev Immunol 2000; 18: 245–73CrossRefGoogle Scholar
  26. 26.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67PubMedCrossRefGoogle Scholar
  27. 27.
    Harris MP, Sutjipto S, Wills KN, et al. Adenovirus-mediated p53 gene transfer inhibits growth of human tumor cells expressing mutant p53 protein. Cancer Gene Ther 1996; 3(2): 121–30PubMedGoogle Scholar
  28. 28.
    Bouvet M, Ellis LM, Nishizaki M, et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 1998; 58(11): 2288–92PubMedGoogle Scholar
  29. 29.
    Sakakura C, Hagiwara A, Tsujimoto H, et al. Inhibition of colon cancer cell proliferation by antisense oligonucleotides targeting the messenger RNA of the Ki-ras gene. AntiCancer Drugs 1995; 6(4): 553–61PubMedCrossRefGoogle Scholar
  30. 30.
    Venook AP, Bergsland EK, Ring E, et al. Gene therapy of colorectal liver metastasis using recombinant adenovirus encoding wt p53 (SCH 58500) via hepatic artery infusion: a phase I study. Proc Am Soc Clin Oncol 1998; 17(1661): 431cGoogle Scholar
  31. 31.
    Cohen AM, Kemeny NE, Kohne CH, et al. Is intra-arterial chemotherapy worthwhile in the treatment of patients with unresectable hepatic colorectal cancer metastases? Eur J Cancer 1996; 32A(13): 2195–205PubMedCrossRefGoogle Scholar
  32. 32.
    Huber BE, Austin EA, Richards CA, et al. Metabolism of 5-fluorocytosineto 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91(17): 8302–6PubMedCrossRefGoogle Scholar
  33. 33.
    Bridgewater JA, Knox RJ, Pitts JD, et al. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Human Gene Ther 1997; 8(6): 709–17CrossRefGoogle Scholar
  34. 34.
    Touraine RL, Ishii-Morita H, Ramsey WJ, et al. The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther 1998; 5(12): 1705–11PubMedCrossRefGoogle Scholar
  35. 35.
    Link Jr CJ, Levy JP, McCann LZ, et al. Gene therapy for colon cancer with the herpes simplex thymidine kinase gene. J Surg Oncol 1997; 64(4): 289–94PubMedCrossRefGoogle Scholar
  36. 36.
    Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Med 1997; 3(12): 1354–61PubMedCrossRefGoogle Scholar
  37. 37.
    Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Human Gene Ther 1999; 10(7): 1239–49CrossRefGoogle Scholar
  38. 38.
    Crystal RG, Hirschowitz E, Lieberman M, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Human Gene Ther 1997; 8(8): 985–1001CrossRefGoogle Scholar
  39. 39.
    Green NK, Youngs DJ, Neoptolemos JP, et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther 1997; 4(4): 229–38PubMedGoogle Scholar
  40. 40.
    Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274(5286): 373–6PubMedCrossRefGoogle Scholar
  41. 41.
    Rothmann T, Hengstermann A, Whitaker NJ, et al. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72(12): 9470–8PubMedGoogle Scholar
  42. 42.
    Ries SJ, Brandts CH, Chung AS, et al. Loss of p 14ARF in tumor cells facilitates replication of the adenovirus mutant dl 1520 (ONYX-015). Nature Med 2000; 6(10): 1123–33Google Scholar
  43. 43.
    Habib N, Kelly MD, Zhao J, et al. E1B-deleted adenovirus gene therapy for liver tumors (conference abstract of First International Meeting on Cancer Gene Therapy, London). Cancer Gene Ther 1999; 6(4): 389Google Scholar
  44. 44.
    Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med 2000; 6(8): 879–85PubMedCrossRefGoogle Scholar
  45. 45.
    Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and systemic anti-tumoral efficacy. Nature Med 2000; 6(10): 1134–9PubMedCrossRefGoogle Scholar
  46. 46.
    Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–5PubMedCrossRefGoogle Scholar
  47. 47.
    Wildner O, Blaese RM, Morris JC. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59(2): 410–3PubMedGoogle Scholar
  48. 48.
    Rogulski KR, Wing MS, Paielli DL, et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Human Gene Ther 2000; 11(1): 67–76CrossRefGoogle Scholar
  49. 49.
    Heise C, Sampson-Johannes A, Williams A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med 1997; 3(6): 639–45PubMedCrossRefGoogle Scholar
  50. 50.
    Wildner O, Blaese RM, Morris JC. Synergy between the herpes simplex virus tk/ganciclovir prodrug suicide system and the topoisomerase I inhibitor topotecan. Human Gene Ther 1999; 10(16): 2679–87CrossRefGoogle Scholar
  51. 51.
    Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene Therapy 2000; 7 (1): 2–8Google Scholar
  52. 52.
    Miller N, Whelan J. Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Human Gene Ther 1997; 8(7): 803–15CrossRefGoogle Scholar
  53. 53.
    Yoon SS, Nakamura H, Carroll NM, et al. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 2000; 14(2): 301–11PubMedGoogle Scholar
  54. 54.
    Hardy S, Kitamura M, Harris-Stansil T, et al. Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71(3): 1842–9PubMedGoogle Scholar
  55. 55.
    Reynolds PN, Feng M, Curiel DT. Chimeric viral vectors — the best of both worlds? Mol Med Today 1999; 5(1): 25–31PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 1999; 6(2): 113–38PubMedCrossRefGoogle Scholar
  57. 57.
    Alemany R, Lai S, Lou YC, et al. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999; 6(1): 21–5PubMedCrossRefGoogle Scholar
  58. 58.
    Shand N, Weber F, Mariani L, et al. Aphase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Human Gene Ther 1999; 10(14): 2325–35CrossRefGoogle Scholar
  59. 59.
    Labow D, Lee S, Ginsberg RJ, et al. Adenovirus vector-mediated gene transfer to regional lymph nodes. Human Gene Ther 2000; 11(5): 759–69CrossRefGoogle Scholar
  60. 60.
    Gunji Y, Tasaki K, Tagawa M, et al. Inhibition of peritoneal dissemination of murine colon carcinoma cells by administrating retrovirus harboring IL-2 gene. Cancer Gene Ther 1998; 5(6): 339–43PubMedGoogle Scholar
  61. 61.
    Tjuvajev JG, Chen SH, Joshi A, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999; 59(20): 5186–93PubMedGoogle Scholar
  62. 62.
    Bartlett JS, Samulski RJ. Fluorescent viral vectors: a new technique for the pharmacological analysis of gene therapy. Nature Med 1998; 4(5): 635–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  • Ming-Jen Chen
    • 1
    Email author
  • Guy A. Chung-Faye
    • 1
  • Peter F. Searle
    • 1
  • Lawrence S. Young
    • 1
  • David J. Kerr
    • 1
  1. 1.CRC Institute for Cancer StudiesUniversity of BirminghamBirminghamEngland

Personalised recommendations