Skip to main content
Log in

Does Parkinson’s Disease Have an Immunological Basis?

The Evidence and its Therapeutic Implications

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is an age-related neurodegenerative movement disorder of unknown aetiology. Immune abnormalities have been described in PD including the occurrence of autoantibodies against neuronal structures and high numbers of microglia cells expressing the histocompatibility glycoprotein human leucocyte antigen-DR in the substantia nigra. An infectious cause for PD has been discussed for years. Disturbed cellular and humoral immune functions in peripheral blood of patients with PD have been also reported. An elevated γδ+ T cell population and increased immunoglobulin G immunity in CSF to heat shock proteins have been found in PD. Cytokines and apoptosis-related proteins were elevated in the striatum in patients with PD. Activated glial cells may participate in neuronal cell death in PD by providing toxic substances. We may conclude that the immune system is involved in the pathogenesis of PD. However, we are not able to determine whether the disturbances described above constitute a primary or secondary phenomenon. Immunomodulatory agents may have important applications in the development of new therapies for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999; 22: 123–44

    Article  PubMed  CAS  Google Scholar 

  2. Müller U, Graeber MB, Haberhausen G, et al. Molecular basis and diagnosis of neurogenetic disorders. J Neurol Sci 1994; 124: 119–40

    Article  PubMed  Google Scholar 

  3. Kuhn W, Müller T, Nastos I, et al. The neuroimmune hypothesis in Parkinson’s disease. Rev Neurosci 1997; 8: 29–34

    PubMed  CAS  Google Scholar 

  4. Pouplard A, Emile J, Pouplard F, et al. Parkinsonism and auto-immunity: antibody against human sympathetic ganglion cells in Parkinson’s disease. Adv Neurol 1979; 24: 321–6

    Google Scholar 

  5. McRae-Degueurce A, Rosengren L, Haglid K, et al. Immuno-cytochemical investigations on the presence of neuronspecific antibodies in the CSF of Parkinson disease cases. Neurochem Res 1988; 13: 679–84

    Article  PubMed  CAS  Google Scholar 

  6. Chen S, Le WD, Xie WJ, et al. Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch Neurol 1998; 55: 1075–80

    Article  PubMed  CAS  Google Scholar 

  7. Marttila RJ, Eskola J, Päivärinta M, et al. Immune functions in Parkinson’s disease. Adv Neurol 1984; 40: 315–23

    PubMed  CAS  Google Scholar 

  8. Fiszer U, Piotrowska K, Korlak J, et al. The immunological status in Parkinson’s disease. Med Lab Sci 1991;48: 196–200

    PubMed  CAS  Google Scholar 

  9. Fiszer U, Mix E, Fredrikson S, et al. V region T cell receptor repertoire in Parkinson’s disease. Acta Neurol Scand 1996; 93: 25–9

    Article  PubMed  CAS  Google Scholar 

  10. Fiszer U, Mix E, Fredrikson S, et al. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand 1994; 90: 160–6

    Article  PubMed  CAS  Google Scholar 

  11. Marttila RJ, Eskola J, Soppi E, et al. Immune functions in Parkinson’s diseases. Lymphocyte subsets, concanavalin A induced suppressor cell activity and in vitro immunoglobulin production. J Neurol Sci 1985; 69: 121–34

    Article  PubMed  CAS  Google Scholar 

  12. Yamada T, Akiyama M, McGeer PL. Complement activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d. Neurosci Lett 1990; 112: 161–6

    Article  PubMed  CAS  Google Scholar 

  13. McGeer PL, Itagaki S, Boyes BE, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988;38: 1285–91

    Article  PubMed  CAS  Google Scholar 

  14. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res 1991; 28: 254–60

    Article  PubMed  CAS  Google Scholar 

  15. Mogi M, Harada H, Riederer P, et al. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994; 165:1–2, 208–10

    Article  PubMed  CAS  Google Scholar 

  16. Mogi M, Harada H, Narabayashi H, et al. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211:1, 13–6

    Article  PubMed  CAS  Google Scholar 

  17. Blum-Degen D, Müller TH, Kuhn W, et al. Interleukin-1-beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995; 202: 17–20

    Article  PubMed  CAS  Google Scholar 

  18. Fiszer U, Mix E, Fredrikson S, et al. γδ+T cells are increased in patients with Parkinson’s disease. J Neurol Sci 1994; 121: 39–45

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien RL, Born W. Heat shock proteins as antigens for γδ T cells. Semin Immunol 1991; 3: 81–7

    PubMed  Google Scholar 

  20. Kaufmann SHE. Heat shock proteins and the immune response. Immunol Today 1990; 11: 129–36

    Article  PubMed  CAS  Google Scholar 

  21. Gao YL, Raine CS, Brosnan C. Humoral response to hsp 65 in multiple sclerosis and other neurological conditions. Neurology 1994; 44: 941–6

    Article  PubMed  CAS  Google Scholar 

  22. Fiszer U, Fredrikson S, Czonkowska A. Humoral response to hsp 65 and hsp 70 in cerebrospinal fluid in Parkinson’s disease. J Neurol Sci 1996; 139: 66–70

    Article  PubMed  CAS  Google Scholar 

  23. Chopp M. The roles of heat shock proteins and immediate early genes in central nervous system normal function and pathology. Curr Opin Neurol Neurosurg 1993; 6: 6–10

    PubMed  CAS  Google Scholar 

  24. Craig EA, Gambill BB, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 1993; 57:402–14

    PubMed  CAS  Google Scholar 

  25. Lakey EK, Margoliash E, Pierce SK. Identification of a peptide binding protein that plays a role in antigen presentation. Proc Natl Acad Sci USA 1987; 84: 1659–63

    Article  PubMed  CAS  Google Scholar 

  26. Manara GC, Sansoni P, Badiali De Giorgi L, et al. New insights suggesting a possible role of a heat shock protein 70kD family related protein in antigen processing/presentation phenomenon in humans. Blood 1993; 82: 2865–71

    PubMed  CAS  Google Scholar 

  27. Jellinger KA. Cytoskeletal pathology in parkinsonism and aging brain. In: Calne PB, Comi B, Crippo D, et al., editors. Park aging. New York: Raven Press, 1989: 35–56

    Google Scholar 

  28. Elizan TS, Schwartz J, Yahr MD, et al. Antibodies against arboviruses in postencephalitic and idiopathic Parkinson’s disease. Arch Neurol 1978; 35: 257–60

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi M, Yamada T. Viral etiology for Parkinson’s disease — a possible role of influenza A virus infection. Jpn J Infect Dis 1999; 52(3): 89–98

    PubMed  CAS  Google Scholar 

  30. Martilla RJ, Arstila P, Nikoskelaimen J. Viral antibodies in the sera from patients with Parkinson’s disease. Eur Neurol 1977; 15: 25–33

    Article  Google Scholar 

  31. Kohbata S, Beaman BL. L-DOPA-responsive movement disorder caused by Nocardia asteroides localized in the brains of mice. Infect Immune 1991; 59: 181–91

    CAS  Google Scholar 

  32. de Pedro-Cuesta J, Gudmundsson G, Abraira V, et al. Whooping cough and Parkinson’s disease. The Europarkinson Preparatory Activity Research Group. Int J Epidemiol 1996; 25(6): 1301–11

    Article  PubMed  Google Scholar 

  33. Jellinger KA. Cell death mechanisms in Parkinson’s disease. J Neural Transm 2000; 107: 1–29

    Article  PubMed  CAS  Google Scholar 

  34. Blum D, Wu Y, Nissou MF, et al. p53 and Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Res 1997; 751: 139–42

    Article  PubMed  CAS  Google Scholar 

  35. Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxy-nucleotidyl transferase labelling and acidine orange staining. Neuroscience 1997; 77: 1037–48

    Article  PubMed  CAS  Google Scholar 

  36. Mogi M, Nagatsu T. Neurotrophins and cytokines in Parkinson’s disease. In: Stern GM, editor. Parkinson’s disease. Adv Neurol vol. 80. Philadelphia: Lippincott Williams & Wilkins, 1999: 135–40

    Google Scholar 

  37. de la Monte SM, Son YK, Ganju N, et al. p53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 1998; 78: 401–11

    PubMed  Google Scholar 

  38. Mogi M, Togari A, Kondo T, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brain. J Neural Transm 2000; 17: 335–41

    Article  Google Scholar 

  39. Hunot S, Bragg B, Ricard D, et al. Nuclear translocation of NF-kappa-B is increased in dopaminergic neurons of patients with Parkinson’s diseases. Proc Natl Acad Sci USA 1997; 94: 7531–6

    Article  PubMed  CAS  Google Scholar 

  40. Bok G, Anglade P, Wallach D, et al. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s diseases. Neurosci Lett 1994; 172:1–2, 151–4

    Article  Google Scholar 

  41. Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson’s diseases and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999; 19(9): 3440–7

    PubMed  CAS  Google Scholar 

  42. Hirsch EC. Glial cells and Parkinson’s disease. J Neurol 2000; 247Suppl. 2:II58–62

    Article  PubMed  Google Scholar 

  43. Hunat S, Boissiere F, Faucheux B, et al. Nitric oxidase synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 1996; 72: 355–63

    Article  Google Scholar 

  44. Krüger R, Hardt C, Tschentscer F, et al. Genetic analysis of immunomodulating factors in sporadic Parkinson’s disease. J Neural Transm 2000; 107: 553–62

    Article  PubMed  Google Scholar 

  45. Cross RJ, Brooks WH, Roszman TL, et al. Hypothalamic immune interaction. Effect of hypophysectomy on neuroimmunoregulation. J Neurol Sci 1982; 53: 557–66

    Article  PubMed  CAS  Google Scholar 

  46. Newsom-Davis J, Vincent A. Receptors, antibodies and disease. Immunol Today 1982; 3: 149–51

    Article  Google Scholar 

  47. Dunnett SB, Björklun A. Prospects for new restorative and neuroprotective treatment in Parkinson’s disease. Nature 1999; 399: A32–9

    Article  PubMed  CAS  Google Scholar 

  48. Ziv I, Melamed E. Role of apoptosis in the pathogenesis of Parkinson’s disease: a novel therapeutic opportunity? Move Disord 1998; 13(6): 865–70

    Article  CAS  Google Scholar 

  49. Selmaj K, Raine CS, Cross AH. Anti-tumor necrosis factortherapy abrogates autoimmune demyelination. Ann Neurol 1991; 30(5): 694–700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by a grant from the Medical Center for Postgraduate Education in Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiszer, U. Does Parkinson’s Disease Have an Immunological Basis?. BioDrugs 15, 351–355 (2001). https://doi.org/10.2165/00063030-200115060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200115060-00001

Keywords

Navigation