Advertisement

Clinical Drug Investigation

, Volume 22, Issue 1, pp 51–65 | Cite as

Pharmacology of Silymarin

  • F. Fraschini
  • G. Demartini
  • D. Esposti
Review Article

Abstract

The flavonoid silymarin and one of its structural components, silibinin, are substances with documented hepatoprotective properties. Their mechanisms of action are still poorly understood. However, the data in the literature indicate that silymarin and silibinin act in four different ways: (i) as antioxidants, scavengers and regulators of the intracellular content of glutathione; (ii) as cell membrane stabilisers and permeability regulators that prevent hepatotoxic agents from entering hepatocytes; (iii) as promoters of ribosomal RNA synthesis, stimulating liver regeneration; and (iv) as inhibitors of the transformation of stellate hepatocytes into myofibroblasts, the process responsible for the deposition of collagen fibres leading to cirrhosis. The key mechanism that ensures hepatoprotection appears to be free radical scavenging. Anti-inflammatory and anticarcinogenic properties have also been documented.

Silymarin is able to neutralise the hepatotoxicity of several agents, including Amanita phalloides, ethanol, paracetamol (acetaminophen) and carbon tetrachloride in animal models. The protection against A. phalloides is inversely proportional to the time that has elapsed since administration of the toxin. Silymarin protects against its toxic principle α-amanitin by preventing its uptake through hepatocyte membranes and inhibiting the effects of tumour necrosis factor-α, which exacerbates lipid peroxidation.

Clinical trials have shown that silymarin exerts hepatoprotective effects in acute viral hepatitis, poisoning by A. phalloides, toxic hepatitis produced by psychotropic agents and alcohol-related liver disease, including cirrhosis, at daily doses ranging from 280 to 800mg, equivalent to 400 to 1140mg of standardised extract. Hepatoprotection has been documented by improvement in liver function tests; moreover, treatment with silymarin was associated with an increase in survival in a placebo-controlled clinical trial in alcoholic liver disease.

Pharmacokinetic studies have shown that silymarin is absorbed by the oral route and that it distributes into the alimentary tract (liver, stomach, intestine, pancreas). It is mainly excreted as metabolites in the bile, and is subject to enterohepatic circulation. Toxicity is very low, the oral 50% lethal dose being 10 000 mg/kg in rats and the maximum tolerated dose being 300 mg/kg in dogs. Moreover, silymarin is devoid of embryotoxic potential.

In conclusion, silymarin is a well tolerated and effective antidote for use in hepatotoxicity produced by a number of toxins, including A. phalloides, ethanol and psychotropic drugs. Numerous experimental studies suggest that it acts as a free radical scavenger, with other liver-specific properties that make it a unique hepatoprotective agent.

Keywords

Flavonoid Quercetin Carbon Tetrachloride Hepatic Injury Silymarin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Madaus S.R.L., Bozen, Italy, for funding used to assist in the preparation of this manuscript.

References

  1. 1.
    Valenzuela A, Garrido A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol Res 1994; 27: 105–12PubMedGoogle Scholar
  2. 2.
    Morazzoni P, Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia 1995; LXVI: 3–42Google Scholar
  3. 3.
    Lecomte J. Les propriétés pharmacologiques de la silybine et de la silymarine. Rev Med Liege 1975; XXX: 110–4Google Scholar
  4. 4.
    Wagner H, Diesel P, Seitz M. Zur chemie und analytik von silymarin aus Silybum marianum gaertn. Arzneimittelforschung 1974; 24: 466–71PubMedGoogle Scholar
  5. 5.
    Vogel G, Trost W, Braatz R, et al. Untersuchungen zu pharmakodynamik, angriffspunkt und wirkungsmechanismsus von silymarin, dem antihepatotoxischen prinzip aus Silybum mar. (L.) gaertn. Arzneimittelforschung 1975; 25: 82–9PubMedGoogle Scholar
  6. 6.
    Desplaces A, Choppin J, Vogel G, et al. The effects of silymarin on experimental phalloidine poisoning. Arzneimittelforschung 1975; 25: 89–96PubMedGoogle Scholar
  7. 7.
    Choppin J, Desplaces A. The effects of silybin on experimental phalloidine poisoning. Arzneimittelforschung 1978; 28: 636–41PubMedGoogle Scholar
  8. 8.
    Vogel G, Trost W. Zur anti-phalloidin-aktivität der silymarine silybin und disilybin. Arzneimittelforschung 1975; 25: 392–3PubMedGoogle Scholar
  9. 9.
    Barbarino F, Neumann E, Deaciuc J, et al. Effect of silymarin on experimental liver lesions. Rev Roum Med Intern 1981; 19: 347–57Google Scholar
  10. 10.
    Schriewer H, Badde R, Roth G, et al. Die antihepatotoxische Wirkung des silymarins bei der leberschädigung durch thioacetamid. Arzneimittelforschung 1973; 23: 160–1Google Scholar
  11. 11.
    Siegers CP, Frühling A, Younes M. Influence of dithiocarb, (+)-catechin and silybine on halothane hepatotoxicity in the hypoxic rat model. Acta Pharmacol Toxicol (Copenh) 1983; 53: 125–9CrossRefGoogle Scholar
  12. 12.
    Mourelle M, Muriel P, Favari L, et al. Prevention of CC14-induced liver cirrhosis by silymarin. Fundam Clin Pharmacol 1989; 3: 183–91PubMedCrossRefGoogle Scholar
  13. 13.
    Luper S. A review of plants used in the treatment of liver disease: part I. Altern Med Rev 1998; 3: 410–21PubMedGoogle Scholar
  14. 14.
    Skottova N, Kreeman V. Silymarin as a potential hypocholesterolaemic drug. Physiol Res 1998; 47: 1–7PubMedGoogle Scholar
  15. 15.
    Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 1989; 9: 105–13PubMedCrossRefGoogle Scholar
  16. 16.
    Valenzuela A, Guerra R. Differential effect of silybin on the Fe2+ -ADP and t-butyl hydroperoxide-induced microsomal lipid peroxidation. Experientia 1986; 42: 139–41PubMedCrossRefGoogle Scholar
  17. 17.
    Mira L, Silva M, Manso CF. Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem Pharmacol 1994; 48: 753–9PubMedCrossRefGoogle Scholar
  18. 18.
    Bosisio E, Benelli C, Pirola O. Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacol Res 1992; 25: 147–54PubMedCrossRefGoogle Scholar
  19. 19.
    Cavallini L, Bindoli A, Siliprandi N. Comparative evaluation of antiperoxidative action of silymarin and other flavonoids. Pharmacol Res Commun 1978; 10: 133–6PubMedCrossRefGoogle Scholar
  20. 20.
    Farghali H, Kamenikova L, Hynie S, et al. Silymarin effects of intracellular calcium and cytotoxicity: a study in perfused rat hepatocytes after oxidative stress injury. Pharmacol Res 2000; 41: 231–7PubMedCrossRefGoogle Scholar
  21. 21.
    Davila JC, Lenherr A, Acosta D. Protective effect of flavonoids on drug-induced hepatotoxicity in vitro. Toxicology 1989; 57: 267–86PubMedCrossRefGoogle Scholar
  22. 22.
    Valenzuela A, Barría T, Guerra R, et al. Inhibitory effect of the flavonoid silymarin on the erythrocyte hemolysis induced by phenhylhydrazine. Biochem Biophys Res Commun 1985; 126: 712–8PubMedCrossRefGoogle Scholar
  23. 23.
    Valenzuela A, Guerra R, Garrido A. Silybin dihemisuccinate protects rat erythrocytes against phenylhydrazine-induced lipid peroxidation and hemolysis. Planta Med 1987; 53: 402–5PubMedCrossRefGoogle Scholar
  24. 24.
    Ramellini G, Meldolesi J. Liver protection by silymarin: in vitro effect on dissociated rat hepatocytes. Arzneimittelforschung 1976; 26: 69–73PubMedGoogle Scholar
  25. 25.
    Valenzuela A, Guerra R. Protective effect of the flavonoid silybin dihemisuccinate on the toxicity of phenylhydrazine on rat liver. FEBS Lett 1985; 181: 291–4PubMedCrossRefGoogle Scholar
  26. 26.
    Valenzuela A, Lagos C, Schmidt K, et al. Silymarin protection against hepatic lipid peroxidation induced by acute ethanol intoxication in the rat. Biochem Pharmacol 34: 1985: 12CrossRefGoogle Scholar
  27. 27.
    Videla LA, Valenzuela A. Alcohol ingestion, liver glutathione and lipoperoxidation: metabolic interrelations and pathological implications. Life Sci 1982; 31: 2395–407PubMedCrossRefGoogle Scholar
  28. 28.
    Campos R, Garrido A, Guerra A. Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 1989; 55: 417–9PubMedCrossRefGoogle Scholar
  29. 29.
    Muriel P, Mourelle M. Prevention by silymarin of membrane alterations in acute CC14 liver damage. J Appl Toxicol 1990; 10: 275–9PubMedCrossRefGoogle Scholar
  30. 30.
    Valenzuela A, Aspillaga M, Vial S, et al. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med 1989; 55: 420–2PubMedCrossRefGoogle Scholar
  31. 31.
    Lettéron P, Labbe G, Degott C, et al. Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Biochem Pharmacol 1990; 39: 2027–34PubMedCrossRefGoogle Scholar
  32. 32.
    Platt D, Schnorr B. Biochemische und elektronenoptische Untersuchungen zur frage der beeinflussbarkeit der aethanol-schadigung der rattenleber durch silymarin. Arzneimittelforschung 1971; 21: 1206–8PubMedGoogle Scholar
  33. 33.
    Hahn G, Lehmann HD, Kurten M, et al. Zur pharmakologie und toxikologie von silymarin, des antihepatotoxischen wirkprinzipes aus Silybum marianum (L.) gaertn. Arzneimittelforschung 1968; 18: 698–704PubMedGoogle Scholar
  34. 34.
    Tyutyulkova N, Gorantcheva U, Tuneva S, et al. Effect of silymarin (carsil) on the microsomal glycoprotein and protein biosynthesis in liver of rats with experimental galactosamine hepatitis. Methods Find Exp Clin Pharmacol 1983; 5: 181–4PubMedGoogle Scholar
  35. 35.
    Muriel P, Garciapiña T, Perez-Alvarez V, et al. Silymarin protects against paracetamol-induced lipid peroxidation and liver damage. J Appl Toxicol 1992; 12: 439–42PubMedCrossRefGoogle Scholar
  36. 36.
    Mereish KA, Bunner DL, Ragland DR, et al. Protection against microcystin-LR-induced hepatotoxicity by silymarin: biochemistry, histopathology and lethality. Pharm Res 1991; 8: 273–7PubMedCrossRefGoogle Scholar
  37. 37.
    Fiebrich F, Koch H. Silymarin, an inhibitor of lipoxygenase. Experientia 1979; 35: 1548–60PubMedCrossRefGoogle Scholar
  38. 38.
    Bindoli A, Cavallini L, Siliprandi N. Inhibitory action of silymarin of lipid peroxide formation in rat liver mitochondria and microsomes. Biochem Pharmacol 1977; 26: 2405–9PubMedCrossRefGoogle Scholar
  39. 39.
    Muriel P, Mourelle M. The role of membrane composition in ATPase activities of cirrhotic rat liver: effect of silymarin. J Appl Toxicol 1990; 10: 281–4PubMedCrossRefGoogle Scholar
  40. 40.
    Mourelle M, Franco MT. Erythrocyte defects precede the onset of CC14-induced liver cirrhosis. Protection by silymarin. Life Sci 1991; 48: 1083–90PubMedCrossRefGoogle Scholar
  41. 41.
    Schriewer H, Weinhold F. The influence of silybin from Silybum marianum (L.) gaertn. on in vitro phosphatidyl choline biosynthesis in rat livers Arzneimittelforschung 1973; 29: 791–2Google Scholar
  42. 42.
    Soto CP, Perez BL, Favari LP, et al. Prevention of alloxan-induced diabetes mellitus in the rat by silymarin. Comp Biochem Physiol 1998; 119C: 125–9Google Scholar
  43. 43.
    Magliulo E, Carosi PG, Minoli L, et al. Studies on the regenerative capacity of the liver in rats subjected to partial hepatectomy and treated with silymarin. Arzneimittelforschung 1973; 23: 161–7PubMedGoogle Scholar
  44. 44.
    Sonnenbichler J, Zetl I. Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. In: Cody V, Middleton E, Harborne JB, editors. Plant flavonoids in biology and medicine: biochemical, pharmacological and structure-activity relationship. New York: Alan R Liss Inc, 1986: 319–31Google Scholar
  45. 45.
    Floersheim GL, Eberhard M, Tschumi P, et al. Effects of penicillin and silymarin on liver enzymes and blood clotting factors in dogs given a boiled preparation of Amanita phalloides. Toxicol Appl Pharmacol 1978; 46: 455–62PubMedCrossRefGoogle Scholar
  46. 46.
    El-Bahay C, Gerber E, Horbach M, et al. Influence of tumor necrosis factor-α and silibin on the cytotoxic action of α-amanitin in rat hepatocyte culture. Toxicol Appl Pharmacol 1999; 158: 253–60PubMedCrossRefGoogle Scholar
  47. 47.
    Dehmlow C, Erhard J, De Groot H. Inhibition of kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 1996; 23: 749–54PubMedCrossRefGoogle Scholar
  48. 48.
    Dehmlow C, Murawski N, De Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci 1996; 58: 1591–600PubMedCrossRefGoogle Scholar
  49. 49.
    De la Puerta R, Martinez E, Bravo L, et al. Effect of silymarin on different acute inflammation models and on leukocyte migration. J Pharm Pharmacol 1996; 48: 968–70CrossRefGoogle Scholar
  50. 50.
    Katiyar SK, Korman NJ, Mukhtar H, et al. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 1997; 89: 556–66PubMedCrossRefGoogle Scholar
  51. 51.
    Lahiri-Chatterjee M, Katiyar SK, Mohan RB, et al. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumor-igenesis model. Cancer Res 1999; 59: 622–32PubMedGoogle Scholar
  52. 52.
    Zhao J, Lahiri-Chatterjee M, Sharma Y, et al. Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis 2000; 21: 811–6PubMedCrossRefGoogle Scholar
  53. 53.
    Manna SK, Mukhopadhyay A, Van NT, et al. Silymarin suppresses TNF-induced activation of NF-kB, c-Jun N-terminal kinase and apoptosis. J Immunol 1999; 163: 6800–9PubMedGoogle Scholar
  54. 54.
    Saliou C, Rihn B, Cillard J, et al. Selective inhibition of NF-kB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett 1998; 440: 8–12PubMedCrossRefGoogle Scholar
  55. 55.
    Saliou C, Kitazawa M, Mclaughlin L, et al. Antioxidants modulate acute solar ultraviolet radiation-induced NF-Kappa-B activation in a human keratinocyte cell line. Free Radic Biol Med 1999; 26: 174–83PubMedCrossRefGoogle Scholar
  56. 56.
    Zi X, Agarwal R. Modulation of mitogen-activated protein kinase activation and cell cycle regulators by the potent skin cancer preventive agent silymarin. Biochem Biophys Res Commun 1999; 263: 528–36PubMedCrossRefGoogle Scholar
  57. 57.
    Fuchs EC, Weyhenmeyer R, Weiner OH. Effects of silibinin and of a synthetic analogue on isolated rat hepatic stellate cells and myofibroblasts. Arzneimittelforschung 1997; 47: 1383–7PubMedGoogle Scholar
  58. 58.
    Boigk G, Stroedter L, Herbst H, et al. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology 1997; 26: 643–9PubMedCrossRefGoogle Scholar
  59. 59.
    Favari L, Perez-Alvarez V. Comparative effects of colchicine and silymarin on CC14 chronic liver damage in rats. Arch Med Res 1997; 28: 11–7PubMedGoogle Scholar
  60. 60.
    Baer-Dubowska W, Szafer H, Krajkakuzniak V. Inhibition of murine hepatic cytochrome P450 activities by natural and synthetic phenolic compounds. Xenobiotica 1998; 28: 735–43PubMedCrossRefGoogle Scholar
  61. 61.
    Miguez MP, Anundi I, Sainz-Pardo LA, et al. Hepatoprotective mechanism of silymarin: no evidence for involvement of cytochrome P450 2E1. Chem Biol Interact 1994; 91: 51–63PubMedCrossRefGoogle Scholar
  62. 62.
    Leber HW, Knauff S. Influence of silymarin on drug metabolizing enzymes in rat and man. Arzneimittelforschung 1976; 26: 1603–5PubMedGoogle Scholar
  63. 63.
    Down WH, Chasseaud LF, Grundy RK. Effect of silybin on the hepatic microsomal drug-metabolising enzyme system in the rat. Arzneimittelforschung 1974; 24: 1986–8PubMedGoogle Scholar
  64. 64.
    Morazzoni P, Montalbetti A, Malandrino S, et al. Comparative pharmacokinetics of silipide and silymarin in rats. Eur J Drug Metab Pharmacokinet 1993; 18: 289–97PubMedCrossRefGoogle Scholar
  65. 65.
    Schandalik R, Gatti G, Perucca E. Pharmacokinetics of silybin in bile following administration of silipide and silymarin in cholecystectomy patients. Arzneimittelforschung 1992; 42: 964–8PubMedGoogle Scholar
  66. 66.
    Pepping J. Milk thistle: Silybum marianum. Am J Health Syst Pharm 1999; 56: 1195–7PubMedGoogle Scholar
  67. 67.
    Janiak B, Kessler B, Kunz W, et al. Die Wirkung von silymarin auf gehalt und function einiger durch einwirkung von tetrachlorkohlenstoff bzw. Halothan beeinflussten mikrosomalen Leberenzyme. Arzneimittelforschung 1973; 23: 1322–6PubMedGoogle Scholar
  68. 68.
    Bulles H, Bulles J, Krumbiegel G, et al. Untersuchungen zur verstoffwechselung und zur ausscheidung von silybin bei der ratte. Arzneimittelforschung 1975; 25: 902–5PubMedGoogle Scholar
  69. 69.
    Mennicke W. What is known about the metabolism and pharmacokinetics of silymarin. In: Braatz R, Schneider CC, editors. Symposium on the pharmacodynamic of silymarin. Munich, Berlin, Vienna: Urban & Schwarzenberg, 1976: 98–102Google Scholar
  70. 70.
    Zhao J, Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis 1999: 8Google Scholar
  71. 71.
    Flora K, Hahn M, Rosen H, et al. Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 1998; 93: 139–43PubMedCrossRefGoogle Scholar
  72. 72.
    Hruby K, Csomos G, Fuhrmann M, et al. Chemotherapy of Amanita phalloides poisoning with intravenous silibinin. Hum Toxicol 1983; 2: 183–95PubMedCrossRefGoogle Scholar
  73. 73.
    Boari C, Baldi E, Rizzoli O, et al. Silymarin in the protection against exogenous noxae. Drug Exp Clin Res 1981; 7: 115–20Google Scholar
  74. 74.
    Palasciano G, Portincasa P, Palmieri V, et al. The effect of silymarin on plasma levels of malondialdehyde in patients receiving long-term treatment with psychotropic drugs. Curr Ther Res Clin Exp 1994; 55: 537–45CrossRefGoogle Scholar
  75. 75.
    Salmi HA, Sarna S. Effect of silymarin on chemical, functional, and morphological alterations of the liver. Scand J Gastroenterol 1981; 17: 517–21CrossRefGoogle Scholar
  76. 76.
    Trinchet JC, Coste T, Levy VG, et al. Traitement de l’hépatite alcoolique par la silymarine. Une étude comparative en double insu chez 116 malades. Gastroenterol Clin Biol 1989; 13: 120–4PubMedGoogle Scholar
  77. 77.
    Pares A, Planas R, Torre M, et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol 1998; 28: 615–21PubMedCrossRefGoogle Scholar
  78. 78.
    Di Carlo G, Mascolo N, Izzo AA, et al. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 1999; 65: 337–53PubMedCrossRefGoogle Scholar
  79. 79.
    De Groot H, Raven U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol 1998; 12: 249–55PubMedCrossRefGoogle Scholar
  80. 80.
    Iwu MM. Antihepatotoxic constituents of Garcinia kola seeds. Experiential 1985; 41: 699–700CrossRefGoogle Scholar
  81. 81.
    Soicke H, Leng Peschlow E. Characterisation of flavonoids from Baccharis trimera and their antihepatotoxic properties. Planta Med 1987; 53: 37–9PubMedCrossRefGoogle Scholar
  82. 82.
    Markham RJ, Erhardt NP, Dininno VL, et al. Flavonoids protect against T-2 mycotoxins both in vitro and in vivo. J Gen Microbiol 1987; 133: 1589–92PubMedGoogle Scholar
  83. 83.
    Vijayaraghavan R, Sugendran K, Pant SC, et al. Dermal intoxication of mice with bis (2-chloroethyl) sulfide and the protective effect of flavonoids. Toxicology 1991; 69: 35–42PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • F. Fraschini
    • 1
  • G. Demartini
    • 1
  • D. Esposti
    • 2
  1. 1.Department of PharmacologyUniversity of MilanMilanItaly
  2. 2.Institute of Human Physiology IIUniversity of MilanMilanItaly

Personalised recommendations