Advertisement

Clinical Drug Investigation

, Volume 18, Issue 1, pp 27–34 | Cite as

Recombinant Human Interferon-β-1a (Rebif®) vs Recombinant Interferon-β-1b (Betaseron®) in Healthy Volunteers

A Pharmacodynamic and Tolerability Study
  • M. Buraglio
  • I. Trinchard-Lugan
  • A. Munafo
  • M. Macnamee
Clinical Pharmacodynamic

Abstract

Objectives: This study compared the pharmacodynamics and tolerability of subcutaneous 6MU (22μg) interferon (IFN)-β-la (Rebif®) and 8MU (250μg) IFN-β-1b (Betaseron®).

Participants and Methods: Twelve healthy volunteers received a single injection of each treatment in this randomised crossover study. Vital signs and treatment tolerability were monitored and blood samples taken for assay of the serum markers of immune activation, β2-microglobulin and neopterin.

Results: Both treatments produced similar increases in β2-microglobulin and neopterin with areas under the concentration-time curves (AUC0-168h) of 2177 ± 669 μg/m1·h for IFN-β-1a and 2323 ± 649 μg/m1·h for IFN-β-1b. Headache was the most common adverse event in both treatment groups, with 15 episodes in the IFN-β-1a group and 11 episodes in the IFN-β-1b group. Both treatments produced increases in body temperature, and mild fever was a common adverse event associated with the treatments. However, 10 volunteers in the IFN-β-1b group experienced fever at WHO grade 2 compared with one in the IFN-β-1a group. Overall, IFN-β-1a had a more favourable adverse-event profile and produced a lower incidence of fever and a smaller increase in body temperature than IFN-β-1b.

Conclusions: Both treatments had equivalent pharmacodynamic effects, but IFN-β-1a may be better tolerated.

Keywords

Multiple Sclerosis Adis International Limited Neopterin Interferon Beta Clin Drug Invest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dianzani F. Viral interference and interferon. New Trends Ther Leuk Lymph 1987;2: 3Google Scholar
  2. 2.
    De Grado WF, Wasserman ZR, Chowdry V. Sequence and structural homologies among type I and type II interferons. Nature 1982; 300: 379–81CrossRefGoogle Scholar
  3. 3.
    Platanias LC, Uddin S, Colamonici OR. Tyrosine phosphorylation of the A and B subunits of type 1 interferon receptor. JBiol Chem 1994; 269: 17761–4Google Scholar
  4. 4.
    Runkel L, Meier W, Blake R, et al. Structural and functional differences between glycosylated and nonglycosylated forms of human interferon β (IFN-β). Pharm Res 1998; 15: 641–9PubMedCrossRefGoogle Scholar
  5. 5.
    Glezerman M, Cohen V, Moshovitz M, et al. Placebo-controlled trial of topical interferon in labial and genital herpes. Lancet 1988; i: 150–2CrossRefGoogle Scholar
  6. 6.
    Gambrosier P, Fraschini P, Labianca P, et al. Beta-interferon in neoplastic patients suffering from herpes zoster or herpes simplex infections. Int J Immunother 1987; III: 237–43Google Scholar
  7. 7.
    Kirby P. Interferon in genital warts: much potential, modest progress. JAMA 1988; 259: 570–2PubMedCrossRefGoogle Scholar
  8. 8.
    Costa S, Poggi MG, Palmisano L, et al. Intramuscular beta-interferon treatment of human papillomavirus lesions in the lower female genital tract. Cervix 1988; 6: 203–12Google Scholar
  9. 9.
    Monsonego J, Cessot G, Ince SE, et al. Randomised double-blind trial of recombinant interferon-beta for condyloma acuminatum. Genitourin Med 1996; 72: 111–4PubMedGoogle Scholar
  10. 10.
    Bornstein J, Pascal B, Zarfati D, etal. Int J STD AIDS 1997; 8: 614–21PubMedCrossRefGoogle Scholar
  11. 11.
    Dinsmore W, Jordan J, O’Mahoney C, et al. Recombinant human interferon-β in the treatment of condylomata acuminata. Int J STD AIDS 1997; 8: 622–8PubMedCrossRefGoogle Scholar
  12. 12.
    Capalbo M, Palmisano L, Bonino F, et al. Intramuscular natural beta interferon in the treatment of chronic hepatitis B: a multicentre trial. Ital J Gastroenterol 1994; 26: 238–41PubMedGoogle Scholar
  13. 13.
    Chemello L, Silvestri E, Cavalletto L, et al. Pilot study on the efficacy of intravenous natural β-interferon therapy in Italian patients with chronic hepatitis C and relation to the HCV genotype. Int Hepatol Commun 1995; 3: 237–43CrossRefGoogle Scholar
  14. 14.
    Miles SA, Wang H, Cortes E, et al. Beta-interferon therapy in patients with poor-prognosis Kaposi sarcoma related to the acquired immunodeficiency syndrome (AIDS). Ann Int Med 1990; 112: 582–9PubMedGoogle Scholar
  15. 15.
    Michalevicz R, Aderka D, Frisch B, et al. Interferon-beta induced remission in a hairy cell leukemia patient resistant to interferon-alpha. Leukemia Res 1988; 12: 845–51CrossRefGoogle Scholar
  16. 16.
    Nagai M, Arai T. Clinical effect of interferon on malignant brain tumours. Neurosurg Rev 1984; 7: 55–64PubMedCrossRefGoogle Scholar
  17. 17.
    The PRISMS Study Group. Randomised, double-blind placebo-controlled study of interferon beta-1a in relapsing-remitting multiple sclerosis: clinical results. Lancet 1998; 352: 1498–504CrossRefGoogle Scholar
  18. 18.
    Jacobs L, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 1996; 39: 285–94PubMedCrossRefGoogle Scholar
  19. 19.
    Paty DW. The interferon beta 1b clinical trial and its implications for other trials. Ann Neurol 1994; 36: S113–S114PubMedCrossRefGoogle Scholar
  20. 20.
    Pozzili C, Bastianelli S, Kondziavtscva T, et al. Magnetic resonance imaging changes with recombinant human interferon beta-1a: a short-term study in relapsing—remitting multiple sclerosis. J Neurol Neurosurg Psychiat 1996; 61: 251–8CrossRefGoogle Scholar
  21. 21.
    The I-FNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43: 655–61CrossRefGoogle Scholar
  22. 22.
    Sica G, Natoli V, Pellegrini A, et al. The antiproliferative effect of tamoxifen and medroxyprogesterone acetate in breast cancer cells is potentiated by natural beta-interferon. Anti-cancer Res 1986; 6: 396Google Scholar
  23. 23.
    Sica G, Natoli V, Stella C, et al. Effect of natural beta-interferon on cell proliferation and steroid receptor level in human breast cancer cells. Cancer 1987; 60: 2419–23PubMedCrossRefGoogle Scholar
  24. 24.
    Sica G, Fabbroni L, Castagnetta L, et al. Antiproliferative effect of interferons on human prostate carcinoma cell lines. Urol Res 1989; 17: 111–5PubMedCrossRefGoogle Scholar
  25. 25.
    De Cicco NF, Sica G, Benedetto MT, et al. In vitro effects of beta-interferon on steroid receptors and prostaglandin output in human endometrial adenocarcinoma. J Steroid Biochem Mol Biol 1988; 30: 359–62Google Scholar
  26. 26.
    Borden EC, Hogan TF, Voelkel JG. Comparative antiproliferative activity in vitro of natural interferons alpha and beta for diploid and transformed human cells. Cancer Res 1982; 42: 4989–53Google Scholar
  27. 27.
    Goldstein D, Sielaff KM, Storer BE, et al. Human biologic response modification by interferon in the absence of measurable serum concentrations: a comparison of subcutaneous and intravenous interferon-β serine. J Natl Cancer Inst 1989; 81: 1061–8PubMedCrossRefGoogle Scholar
  28. 28.
    Salmon P, Le Cotonnec J-Y, Galazka A, et al. Pharmacokinetics and pharmacodynamics of recombinant interferon-β in healthy male volunteers. J Interferon Cytokine Res 1996; 16: 759–64PubMedCrossRefGoogle Scholar
  29. 29.
    Alam J, McAllister A, Scaramucci J, et al. Pharmacokinetics and pharmacodynamics of interferon beta-1a (IFN-beta-1a) in healthy volunteers after intravenous, subcutaneous or intramuscular administration. Clin Drug Invest 1997; 14(1): 35–43CrossRefGoogle Scholar
  30. 30.
    Munafo A, Trinchard I, Nguyen T, et al. Comparative pharmacokinetics and pharmacodynaimcs of recombinant human intereferon beta-1a after intramuscular and subcutaneous administration. Eur JNeurol 1998; 5: 187–93CrossRefGoogle Scholar
  31. 31.
    Buchwalder P-A, Buclin T, Trinchard I, et al. Pharmacokinetics (PK) and pharmacodynamics (PD) of interferon beta 1-a in healthy volunteers. Clin Pharmacol Ther 1988; 63(2): 166Google Scholar
  32. 32.
    Rothuizen EL, Buclin T, Spertini F, et al. Influence of interferon beta-1a dose frequency on PBMC cytokine secretion and biological effect markers. J Neuroimmunol. In press 1999Google Scholar
  33. 33.
    Huber C, Batchelor JR, Fuchs D, et al. Immune response-associated production of neopterin: release from macrophages primarily under the control of interferon-γ. J Exp Med 1984; 160: 310–6PubMedCrossRefGoogle Scholar
  34. 34.
    Troppmair J, Nachbaur K, Herold M, et al. In-vitro and in-vivo studies on the induction of neopterin biosynthesis by cytokines, alloantigens and liposccharide. Clin Exp Immunol 1988; 74: 392–7PubMedGoogle Scholar
  35. 35.
    Chiang J, Gloff CA, Yoshizawa CN, et al. Pharmacokinetics of recombinant human interferon-βser in healthy volunteers and its effects on serum neopterin. Pharm Res 1993; 10: 567–72PubMedCrossRefGoogle Scholar
  36. 36.
    Witt PL, Storer BE, Bryan GT, et al. Pharmacodynamics of biological response in vivo after single and multiple doses of interferon-β. J Immunother 1993; 13: 191–200CrossRefGoogle Scholar
  37. 37.
    Liberati AM, Garofani P, De Angelis V, et al. Double-blind randomised phase I study on the clinical tolerance and pharmacodynamics of natural and recombinant interferon-β given subcutaneously. J Interferon Res 1994; 14: 61–9PubMedCrossRefGoogle Scholar
  38. 38.
    Rudick RA, Carpenter CS, Cookfair DL, et al. In vitro and in vivo inhibition of mitogen-driven T-cell activation by recombinant β interferon. Neurology 1993; 43: 2080–7PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamuro K, Tanigaki N, Pressman D. Multiple common properties of human beta-2-microglobulin and the common portion fragment derived from HL-A antigen molecules. Proc Natl Acad sci USA 1973; 70: 2863–5PubMedCrossRefGoogle Scholar
  40. 40.
    Berggard I, Bearn AG. Isolation and properties of a low molecular weight beta-2-globulin occurring in human biological fluids. J Biol Chem 1968; 243: 4095–103PubMedGoogle Scholar
  41. 41.
    Liberati AM, Fizzotti M, Proietti MG, et al. Biochemical host response to interferon-beta. J Interferon Res 1988; 8: 765–77PubMedCrossRefGoogle Scholar
  42. 42.
    Spear G, Paulnock D, Jordan R, et al. Enhancement of monocyte class I and II histocompatibility antigens expression in man by in vitro B-interferon. Clin Exp Immunol 1987; 69: 107–15PubMedGoogle Scholar
  43. 43.
    Kaufman S. The structure of the phenylalanine-hydroxylation cofactor. Proc Natl Acad sci USA 1963; 50: 1085PubMedCrossRefGoogle Scholar
  44. 44.
    Borden EC, Rinehart JJ, Storer BE, et al. Biological and clinical effects of interferon βserat two doses. J Interferon Res 1990; 10: 559–70PubMedCrossRefGoogle Scholar
  45. 45.
    Byhardt RW, Vaickus L, Witt PL, et al. Recombinant human interferon-beta (rHuIFN-beta) and radiation therapy for inoperable non-small cell lung cancer. J Interferon Cytokine Res 1996; 16: 891–902PubMedCrossRefGoogle Scholar
  46. 46.
    Aulitzky We, Peschel C, Despres D, et al. Divergent in vivo and in vitro antileukemic activity of recombinant interferon beta in patients with chronic-phase chronic myelogenous leukemia. Ann Hematol 1993; 67: 205–11PubMedCrossRefGoogle Scholar
  47. 47.
    Liberati AM, Horisberger M, Schippa M, et al. Biochemical and immunological responses of hairy cell leukemia patients to interferon beta. Cancer Immunol Immunother 1991; 34: 115–22PubMedCrossRefGoogle Scholar
  48. 48.
    Fierlbeck G, Ulmer A, Schreiner T, et al. Pharmacodynamics of recombinant IFN-beta during long-term treatment of malignant melanoma. J Interferon Cytokine Res 1996; 16: 777–81PubMedCrossRefGoogle Scholar
  49. 49.
    Coclet-Ninin J, Dayer JM, Burger D. Interferon beta not only inhibits interleukin-1beta and tumor necrosis factor alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw 1997; 8: 345–9PubMedGoogle Scholar

Copyright information

© Adis International Limited 1999

Authors and Affiliations

  • M. Buraglio
    • 1
  • I. Trinchard-Lugan
    • 2
  • A. Munafo
    • 2
  • M. Macnamee
    • 1
  1. 1.Bourn Hall ClinicLCG BioscienceBourn, CambridgeUK
  2. 2.Ares-Serono International S.A.GenevaSwitzerland

Personalised recommendations