American Journal of Cancer

, Volume 3, Issue 3, pp 133–149 | Cite as

Graduated Systemic Treatment of AIDS-Associated Kaposi Sarcoma

In the Era of Highly Active Antiretroviral Therapy
  • Ulrich R. Hengge
  • Gudrun Tossing
  • Vivian Kouri
  • Stefan Fruehauf
Therapy in Practice


Kaposi sarcoma is a mesenchymal tumor involving blood and lymphatic vessels. It is the most common malignancy in HIV-infected patients and is classified as one of the AIDS-defining diseases. First described as early as 1872, it is only in recent years that deeper insights into the pathogenesis of Kaposi sarcoma have been gained; Kaposi sarcoma represents an extraordinary example of viral oncogenesis and growth control by the immune system.

Although the incidence of HIV-related Kaposi sarcoma as the initial manifestation of AIDS has recently decreased, the overall prevalence of the disease remains stable. To date, AIDS-associated Kaposi sarcoma (AIDS-KS) remains a major cause of severe disease complications and fatal outcome in HIV-positive homosexual men.

The initial success of systemic interferon-α (IFNα) treatment in AIDS-KS occurred before the identification of the human herpes virus (HHV)-8 (Kaposi sarcoma herpes virus [KSHV]) and in the absence of a coherent view of Kaposi sarcoma pathogenesis. Over the past several years a more comprehensive understanding of how Kaposi sarcoma develops and why the neoplasm occurs at increased virulence in HIV-infected persons has been established. HHV-8 can be found in all types of Kaposi sarcoma, whether related to HIV or not. In the era of highly active antiretroviral therapy (HAART), regression of AIDS-KS has been observed with pure antiretroviral therapeutic regimens. A revival of local therapy of Kaposi sarcoma may occur, if HAART therapy is shown to prevent spreading of Kaposi sarcoma disease. In fact, Kaposi sarcoma is not so much the result of immunodeficiency but the result of immune activation triggered by inflammatory cytokines, which can be partly antagonized by IFNα. In advanced Kaposi sarcoma, conventional chemotherapy used to be a double-edged treatment strategy as it counteracts the reconstitution of the immune system. However, novel agents, for example, pegylated liposomal doxorubicin or daunorubicin, selectively target the tumor with better response rates and less cumulative toxicity than with all other chemotherapies. This article reviews the rationale for and results with graduated systemic therapy of patients with AIDS-KS to yield a more comprehensive treatment approach for this extraordinary malignancy.


Liposomal Doxorubicin Cidofovir Foscarnet Alitretinoin Liposomal Daunorubicin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Nicole-C. Bartosch for editorial assistance. Drs Hengge, Kouri and Fruehauf have no conflicts of interest directly relevant to the content of this review. Dr Tossing is an employee of Essex Pharmaceuticals.

This manuscript was submitted in April 2002 and was accepted in its revised form in October 2003.


  1. 1.
    Kaposi M. Idiopathisches multiples Pigmentsarkom der Haut. Arch Derm Syph 1872; 4: 742–9Google Scholar
  2. 2.
    Snover DC, Rosai J. Vascular sarcomas of the skin. In: Wick MR, editor. Clinical and biochemical analysis. Vol. 20. New York: Marcel Dekker, 1985: 181–209Google Scholar
  3. 3.
    Taylor IF, Templeton AC, Vogel CL, et al. Kaposi’s sarcoma in Uganda: a clinico- pathologic study. Int J Cancer 1971; 8: 122–35PubMedCrossRefGoogle Scholar
  4. 4.
    Hiesse C, Kriaa F, Rieu P, et al. Incidence and type of malignancies occurring after renal transplantation in conventionally and cyclosporine-treated recipients: analysis of a 20-year period in 1600 patients. Transplant Proc 1995; 27: 972–4PubMedGoogle Scholar
  5. 5.
    Friedman-Kien AE. Disseminated Kaposi’s sarcoma syndrome in young homosexual men. J Am Acad Dermatol 1981; 5: 468–71PubMedCrossRefGoogle Scholar
  6. 6.
    Beral V, Peterman TA, Berkelman RL, et al. Kaposi’s sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 1990; 335: 123–8PubMedCrossRefGoogle Scholar
  7. 7.
    Miles SA. Pathogenesis of HIV-related Kaposi’s sarcoma. Curr Opin Oncol 1994; 6: 497–502PubMedCrossRefGoogle Scholar
  8. 8.
    Armes IC. A review of Kaposi’s sarcoma. Adv Cancer 1989; 53: 73–87CrossRefGoogle Scholar
  9. 9.
    Ensoli B, Barillari G, Gallo RC. Pathogenesis of AIDS-associated KS. Hematol Oncol Clin North Am 1991; 5: 281–95PubMedGoogle Scholar
  10. 10.
    Stiirzl M, Brandstetter H, Roth WK. Kaposi’s sarcoma: a review of gene expression and ultrastructure of KS spindle cells in vivo. AIDS Res Hum Retroviruses 1992; 8: 1753–62CrossRefGoogle Scholar
  11. 11.
    Jablonowski H. Interferons in Kaposi’s sarcoma. In: Aul C, editor. Interferons: biolog activities, clinical efficacy. Berlin Heidelberg: Springer-Verlag, 1997: 196–216Google Scholar
  12. 12.
    Gill PS. Pathogenesis of HIV-related malignancies. Curr Opin Oncol 1991; 3: 867–71PubMedCrossRefGoogle Scholar
  13. 13.
    Ensoli B, Barillari G, Gallo RC. Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi’s sarcoma. Immunol Rev 1992; 127: 147–55PubMedCrossRefGoogle Scholar
  14. 14.
    Williams AO, Ward IM, Li IF et al. Immunohistochemical localization of transforming growth factor -β1 in Kaposi’s sarcoma. Hum Pathol 1995; 26: 469–73PubMedCrossRefGoogle Scholar
  15. 15.
    Hengge UR, Ruzicka T, Tyring SK et al. Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 2: pathogenesis, Castleman’s disease, and pleural effusion lymphoma. Lancet Infect Dis 2002; 2: 344–52PubMedCrossRefGoogle Scholar
  16. 16.
    AlbiniA,_BarillariG, Benelli R et al. Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci U S A1995; 2392: 4838–42CrossRefGoogle Scholar
  17. 17.
    Ensoli B, Gendelman R, Markham P et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature 1994; 371: 674–80PubMedCrossRefGoogle Scholar
  18. 18.
    Maitra RK, McMillan NA, Desai S et al. HIV-1 Tat RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology 1994; 204: 823–7PubMedCrossRefGoogle Scholar
  19. 19.
    Miles SA. Pathogenesis of human immunodeficiency virus-related Kaposi’s sarcoma. Curr Opin Oncol 1992; 4: 875–82PubMedCrossRefGoogle Scholar
  20. 20.
    Chang Y, Cesarman E, Pessin MS et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 267: 1078–80Google Scholar
  21. 21.
    Goebel F-D, Jablonowski H. Therapy of special HIV-associated diseases: HCV- HIV-co-infection and AIDS-related Kaposi’s sarcoma. Eur J Med Res 1999; 4: 507–13PubMedGoogle Scholar
  22. 22.
    Zong I, Ciufo DM, Viscidi R et al. Genotypic analysis at multiple loci across Kaposi’s sarcoma herpesvirus (KSHV) DNA molecules: clustering patterns, novel variants and chimerism. J Clin Virol 2002; 23: 119–48PubMedCrossRefGoogle Scholar
  23. 23.
    Moore PS, Gao SJ, Dominguez G et al. Primary characterization of a herpesvirus agent associated with Kaposi’s sarcoma. J Virol 1996; 70: 549–58PubMedGoogle Scholar
  24. 24.
    Sarid R, Sato T, Bohensky RA, et al. Kaposi’s sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 1997; 3: 293–8PubMedCrossRefGoogle Scholar
  25. 25.
    Bais C, Santomasso B, Coso O, et al. Kaposi’s sarcoma-associated human herpes- virus-8 is a viral oncogene and angiogenesis activator. Nature 1998; 391: 86–9PubMedCrossRefGoogle Scholar
  26. 26.
    Wu H, Mitra D, Mesri E, et al. Human herpes viruses-8 (HHV-8)-mediated CD4(+) T-cell lymphopenia [abstract no. 437]. 5th Conf Retrovir Opport Infect 1998, 161Google Scholar
  27. 27.
    Kedes DH, Operskalski E, Busch M, et al. The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med 1996; 2: 918–24PubMedCrossRefGoogle Scholar
  28. 28.
    Simpson GR, Schulz TF, Whitby D, et al. Prevalence of Kaposi’s sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet 1996; 346: 1133–8CrossRefGoogle Scholar
  29. 29.
    Whitby D, Howard MR, Tenant-Flowers M, et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi’s sarcoma. Lancet 1995; 346: 799–802PubMedCrossRefGoogle Scholar
  30. 30.
    Gao SI, Kingsley L, Hoover DR, et al. Seroconversion to antibodies against Kaposi’s sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi’s sarcoma. N Engl J Med 1996; 335: 233–41PubMedCrossRefGoogle Scholar
  31. 31.
    Martin JN, Ganem DE, Osmond DH, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med 1998; 338: 948–54PubMedCrossRefGoogle Scholar
  32. 32.
    Oksenhendler E, Cazals-Hatem D, Schulz TF, et al. Transient angiolymphoid hyperplasia and Kaposi’s sarcoma after primary infection with human herpesvirus 8 in a patient with human immunodeficiency virus infection. N Engl J Med 1998; 338: 1585–90PubMedCrossRefGoogle Scholar
  33. 33.
    Ziegler JL, Katongole-Mbidde E. Kaposi’s sarcoma in childhood: an analysis of 100 cases from Uganda and relationship to HIV infection. Int J Cancer 1996; 65: 200–3PubMedCrossRefGoogle Scholar
  34. 34.
    Wabinga HR, Parkin DM, Wabwire-Mangen, et al. Cancer in Kampala, Uganda, in 1989-91: changes in incidence in the era of AIDS. Int J Cancer 1993; 54: 26–36PubMedCrossRefGoogle Scholar
  35. 35.
    Jones JL, Hanson DL, Dworkin MS, et al. Effect of antiretroviral therapy on recent trends in selected cancers among HIV-infected persons. Adult/Adolescent Spectrum of HIV Disease Project Group. J Acquir Immune Defic Syndr 1999; 21: S11–7PubMedGoogle Scholar
  36. 36.
    Sitas F, Newton R. Kaposi’s sarcoma in South Africa. J Natl Cancer Inst 2001; 28: 1–4Google Scholar
  37. 37.
    Purvis SF, Katongole-Mbidde E, Johnson L, et al. High incidence of Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus in tumor lesions and peripheral blood mononuclear cells from patients with Kaposi’s sarcoma in Uganda. J Infect Dis 1997; 175: 947–50PubMedCrossRefGoogle Scholar
  38. 38.
    Hermans P. Epidemiology, etiology and pathogenesis, clinical presentations and therapeutic approaches in Kaposi’s sarcoma: 15-year lessons from AIDS. Biomed Pharmacother 1998; 52: 440–6PubMedCrossRefGoogle Scholar
  39. 39.
    Ensoli B, Gallo RC. Pathogenesis of AIDS-associated Kaposi’s sarcoma. Hematol Oncol Clin North Am 1991; 5: 281–95PubMedGoogle Scholar
  40. 40.
    Hermans P, Franchioly PPP, Thioux c et al. Possible role of granulocyte- macrophage colony stimulating factor (GM-CSF) on the rapid progression of AIDS related Kaposi’s sarcoma lesions in vivo. Br J Haematol 1994; 345: 84–6Google Scholar
  41. 41.
    Wang CY, Schroeter AL, Su WP. Acquired immunodeficiency syndrome-related Kaposi’s sarcoma. Mayo Clin Proc 1995; 70: 869–79PubMedGoogle Scholar
  42. 42.
    Samaniego F, Markham PD, Gallo RC, et al. Inflammatory cytokines induce AIDS-Kaposi’s sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi’s sarcoma-like lesion formation in nude mice. J Immunol 1995; 154: 3582–92PubMedGoogle Scholar
  43. 43.
    Neipel F, Albrecht IC, Fleckenstein B. Cell-homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 1997; 71: 4187–92PubMedGoogle Scholar
  44. 44.
    Albrecht IC, Nicholas I, Biller D, et al. Primary structure of the herpesvirus saimiri genome. J Virol 1992; 66: 5047–58PubMedGoogle Scholar
  45. 45.
    Neipel F, Albrecht IC, Ensser A, et al. Human herpesvirus 8 encodes a homolog of interleukin-6. J Virol 1997; 71: 839–42PubMedGoogle Scholar
  46. 46.
    Sun R, Lin SF, Staskus K, et al. Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 1999; 73: 2232–42PubMedGoogle Scholar
  47. 47.
    Moore PS, Boshoff C, Weiss RA, et al. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274: 1739–44PubMedCrossRefGoogle Scholar
  48. 48.
    Renne R, Barry C, Dittmer D, et al. Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma- associated herpesvirus. J Virol 2001; 75: 458–68PubMedCrossRefGoogle Scholar
  49. 49.
    Dupin N, Fisher C, Kellam P, et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A 1999; 96: 4546–51PubMedCrossRefGoogle Scholar
  50. 50.
    Radkov SA, Kellam P, Boshoff C. The latent nuclear antigen of Kaposi sarcoma- associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 2000; 6: 1121–7PubMedCrossRefGoogle Scholar
  51. 51.
    Monini P, Colombini S, Sturzl M, et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi’s sarcoma. Blood 1999; 93: 4044–58PubMedGoogle Scholar
  52. 52.
    Jones KD, Aoki Y, Chang Y et al. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 1999; 94: 2871–9PubMedGoogle Scholar
  53. 53.
    Chang J, Renne R, Dittmer D, et al. Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 2000; 266: 17–25PubMedCrossRefGoogle Scholar
  54. 54.
    Russo JJ, Bohenzky RA, Chien C, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 1996; 93: 14862–7PubMedCrossRefGoogle Scholar
  55. 55.
    Cesarman E, Nador RG, Bai F, et al. Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol 1996; 70: 8218–23PubMedGoogle Scholar
  56. 56.
    Arvanitakis L, Geras-Raaka E, Varma A, et al. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 1997; 385: 347–50PubMedCrossRefGoogle Scholar
  57. 57.
    Lee H, Veazey R, Williams K, et al. Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus. Nat Med 1998; 4: 435–40PubMedCrossRefGoogle Scholar
  58. 58.
    Osborne J, Moore PS, Chang Y. KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol 1999; 60: 921–7PubMedCrossRefGoogle Scholar
  59. 59.
    Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 1998; 391: 86–9PubMedCrossRefGoogle Scholar
  60. 60.
    Yang TY, Chen SC, Leach W, et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 2000; 191: 445–54PubMedCrossRefGoogle Scholar
  61. 61.
    Cheng EH, Nicholas J, Bellows DS, et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A 1997; 94: 690–4PubMedCrossRefGoogle Scholar
  62. 62.
    Sarid R, Sato T, Bohenzky RA, et al. Kaposi’s sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 1997; 3: 293–8PubMedCrossRefGoogle Scholar
  63. 63.
    Cannon M, Cesarman E. Kaposi’s sarcoma-associated herpes virus and acquired immunodeficiency syndrome-related malignancy. Semin Oncol 2000; 27: 409–19PubMedGoogle Scholar
  64. 64.
    Thome M, Schneider P, Hofmann K et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997; 386: 517–21PubMedCrossRefGoogle Scholar
  65. 65.
    Hengge UR, Ruzicka T, Tyring K et al. Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis 2002; 2: 281–92PubMedCrossRefGoogle Scholar
  66. 66.
    Krown SE, Real EX, Krim M et al. Preliminary observations on the effect of recombinant leukocyte A interferon in homosexual men with Kaposi’s sarcoma. N Engl J Med 1983; 308: 1071–6PubMedCrossRefGoogle Scholar
  67. 67.
    Baca-Regen L, Heinzinger N, Stevenson M et al. Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency type 1-infected monocytes. J Virol 1994; 68: 7559–65PubMedGoogle Scholar
  68. 68.
    Ho DD, Hartshorn KL, Rota R, et al. Recombinant human interferon-alpha-A suppresses HTLV-III replication in vitro. Lancet 1985; I: 602–4CrossRefGoogle Scholar
  69. 69.
    Evans LM, Itri LM, Campion M, et al. Interferon-alfa-2a in the treatment of acquired immunodeficiency syndrome-related Kaposi’s sarcoma. J Immunother 1991; 10: 39–50PubMedCrossRefGoogle Scholar
  70. 70.
    Real FX, Oettgen HF, Krown SE. Kaposi’s sarcoma and the acquired immune deficiency syndrome: treatment with high and low doses of recombinant leukocyte A interferon. J Clin Oncol 1986; 4: 544–51PubMedGoogle Scholar
  71. 71.
    Krown SE, Real EX, Krim M, et al. Recombinant leukocyte A interferon in Kaposi’s sarcoma. Ann N Y Acad Sci 1984; 437: 431–7PubMedCrossRefGoogle Scholar
  72. 72.
    Gelmann EP, Preble OT, Steis R, et al. Human lymphoblastoid interferon treatment of Kaposi’s sarcoma in the acquired immune deficiency syndrome: clinical response and prognostic parameters. Am J Med 1985; 78: 737–41PubMedCrossRefGoogle Scholar
  73. 73.
    Vadhan-Raj S, Wong G, Gnecco C et al. Immunological variables in patients with Kaposi’s sarcoma and the acquired immune deficiency syndrome. Cancer Res 1986; 46: 417–25PubMedGoogle Scholar
  74. 74.
    Mildvan D, Bassikios Y, Zucker ML et al. Synergy, activity and tolerability of zidovudine and interferon-alpha in patients with symptomatic HIV-1 infection: ACTG 068. Antiviral Ther 1996; 1: 77–88Google Scholar
  75. 75.
    Krown SE, Niedzwiecki D, Bhalla B et al. Relationship and prognostic value of endogenous IFN-alpha, β2-microglobuline, and neopterin serum levels in patients with Kaposi’s sarcoma and AIDS. J Acquir Immune Defic Syndr 1991; 4: 871–80PubMedCrossRefGoogle Scholar
  76. 76.
    Mildvan D, Machado SG, Wilets I et al. Endogenous IFN and triglyceride concentrations to assess response to zidovudine in AIDS and advanced AIDS- related complex. Lancet 1992; 339: 453–6PubMedCrossRefGoogle Scholar
  77. 77.
    Shepherd FA, Beaulieu R, Gelmon K et al. Prospective randomised trial of two dose levels of interferon alfa with zidovudine for the treatment of Kaposi’s sarcoma associated with human immunodeficiency virus infection: a Canadian HIV Clinical Trials Network Study. J Clin Oncol 1998; 16: 1736–42PubMedGoogle Scholar
  78. 78.
    Krown SE, Gold JWM, Niedwiecki D et al. Interferon and zidovudine: safety, tolerance, and clinical and virological effects in patients with Kaposi’s sarcoma associated with the acquired immunodeficiency syndrome (AIDS). Ann Intern Med1990; 112: 812–21PubMedGoogle Scholar
  79. 79.
    Levine AM, Tulpule A. Clinical aspects and management of AIDS-related Kaposi’s sarcoma. Eur J Cancer 2001; 37: 1288–95PubMedCrossRefGoogle Scholar
  80. 80.
    Mauss S, Jablonowski H. Efficacy safety and tolerance of low-dose, long-term interferon-alfa2b and zidovudine in early-stage AIDS-associated Kaposi’s sarcoma. J Acquir Immune Defic Syndr 1995; 2: 157–62Google Scholar
  81. 81.
    Tossing G. The role of endogenous interferon-alpha in HIV-infection and autoimmune diseases: an overview. In: Aul C editor. Interferons biolog activities, clinical efficacy. Berlin Heidelberg: Springer-Verlag, 1997: 14–25Google Scholar
  82. 82.
    Hess G, Rossol S, Rossol R et al. TNF and IFN as prognostic markers in HIV- infection. Infection 1991; 19: 93–7CrossRefGoogle Scholar
  83. 83.
    Torres G. Use of IFN-alpha in HIV-disease. In: Jäger H editor. AIDS: Eine Krankheit wird behandelbar. Landsberg: Ecomed Verlagsgesellschaft, 1993: 189–93Google Scholar
  84. 84.
    Rossol S, Voth R, Laubenstein HP et al. IFN-production in patients infected with HIV-1. J Infect Dis 1989; 159: 815–21PubMedCrossRefGoogle Scholar
  85. 85.
    Lau AS, Livesey JF. Endotoxin induction of TNF is enhanced by acid-labile alpha- IFN in AIDS. J Clin Invest 1989; 84: 738–43PubMedCrossRefGoogle Scholar
  86. 86.
    Poli G, Biswas P, Fauci AS. IFN’s in the pathogenesis and treatment of HIV- infection. Antiviral Res 1994; 24: 221–33PubMedCrossRefGoogle Scholar
  87. 87.
    Schröder HC, Müller WEG Pfleiderer W. With oligoadenylates and intracellular immunity against retroviruses. Nachr Chem Tech Lab 1992; 40: 1352–60CrossRefGoogle Scholar
  88. 88.
    Cohen B, Gothelf Y, Vaiman D et al. IL-6 induces the 2–5 oligoadenylate synthetase gene in M1 cells through an effect on the IFN-responsive enhancer. Cytokine 1991; 3: 83–91PubMedCrossRefGoogle Scholar
  89. 89.
    Von Wussow P, Jakschies D, Hochkeppel HK et al. The human intracelllular Mx- homologous protein is specifically induced by type I IFN’s. Eur J Immunol 1990; 20: 2015–9CrossRefGoogle Scholar
  90. 90.
    Jakschies D, Zachaval R, Müller R et al. Strong transient expression of the type I IFN-induced MxA protein in hepatitis A, but not in acute hepatitis B and C. Hepatology 1994; 19: 857–65PubMedGoogle Scholar
  91. 91.
    Antinori A, Izzi I, Ammassari A, et al. Evaluation of different staging systems for Kaposi’s sarcoma in HIV-infected patients. J Cancer Res Clin Oncol 1992; 118: 635–6PubMedCrossRefGoogle Scholar
  92. 92.
    Krown SE, Metroka C, Wernz JC. Kaposi’s sarcoma in the acquired immune deficiency syndrome: a proposal for uniform evaluation, response, and staging criteria. AIDS Clinical Trials Group Oncology Committee. J Clin Oncol 1989; 7: 1201–7PubMedGoogle Scholar
  93. 93.
    Francis ND, Parkin JM, Weber J et al. Kaposi’s sarcoma in acquired immune deficiency syndrome (AIDS). J Clin Pathol 1986; 39: 469–74PubMedCrossRefGoogle Scholar
  94. 94.
    Collaborative Group on AIDS incubation and HIV Survival including the CAS- CADE EU Concerted Action. Time from HIV-1 seroconversion to AIDS and death before wide-spread use of highly-active antiretroviral therapy: a collaborative re-analysis. Lancet 2000; 355: 1131–7CrossRefGoogle Scholar
  95. 95.
    Hengge UR, Esser S, Rudel HP et al. Long-term chemotherapy of HIV-associated Kaposi’s sarcoma with liposomal doxorubicin. Eur J Cancer 2001; 37: 878–83PubMedCrossRefGoogle Scholar
  96. 96.
    Hortobagyi GN. Anthracyclines in the treatment of cancer: an overview. Drugs 1997; 54: 1–7PubMedCrossRefGoogle Scholar
  97. 97.
    Hengge UR, Brockmeyer NH, Baumann M et al. Liposomal doxorubicin treatment of AIDS-related Kaposi’s sarcoma [letter]. Lancet 1993; 342: 497PubMedCrossRefGoogle Scholar
  98. 98.
    Lasic DD. Doxorubicin in sterically stabilized liposomes. Nature 1996; 380: 561–2PubMedCrossRefGoogle Scholar
  99. 99.
    Martin FJ. STEALTH liposome technology: an overview. DOXIL Clinical Series 1996; 1: 1–8Google Scholar
  100. 100.
    Gabizon A, Catane R, Uziely B et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987–92PubMedGoogle Scholar
  101. 101.
    Northfelt DW, Martin FJ, Working P et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumour localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 1996; 36: 55–63PubMedGoogle Scholar
  102. 102.
    Stewart S, Jablonowski H, Goebel FD et al. Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol 1998; 16: 683–91PubMedGoogle Scholar
  103. 103.
    Northfelt DW, Dezube BJ, Thommes JA. Pegylated liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine (ABV) in the treatment of AIDS- related Kaposi’s sarcoma: results of a randomised phase III clinical trial. J Clin Oncol 1998; 16: 2445–51PubMedGoogle Scholar
  104. 104.
    Gill PS, Wernz J, Scadden DT et al. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 1996; 14: 2353–64PubMedGoogle Scholar
  105. 105.
    Rosenthal E, Poizot-Martin I, Saint-Marc T et al. Phase IV study of lipsomal daunorubicin (DuanoXome) in ADIS-related Kaposi sarcoma. Am J Clin Oncol 2002; 25(1): 2353–64CrossRefGoogle Scholar
  106. 106.
    Tulpule A, Yung RC, Wernz J et al. Phase II trial of lipsomal daunorubicin in the treatment of AIDS-related pulmonary Kaposi’s sarcoma. J Clin Oncol 1998; 16(10): 3369–74PubMedGoogle Scholar
  107. 107.
    Bennett CL, Golup RM, Stinson TJ et al. Cost-effectiveness analysis comparing liposomal anthracyclines in the treatment of AIDS-related Kaposi’s sarcoma. J Acquir Immune Defic Syndr Hum Retrovirus 1998; 18: 460–5CrossRefGoogle Scholar
  108. 108.
    Osoba D, Northfelt DW, Budd DW et al. Effect of treatment on health-related quality of life in acquired immunodeficiency syndrome (AIDS): related Kaposi’s sarcoma: a randomised trial of pegylated liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine. Cancer Invest 2001; 19: 573–80PubMedCrossRefGoogle Scholar
  109. 109.
    Hengge UR, Brockmeyer NH, Rasshofer R et al. Fatal hepatic failure with liposomal doxorubicin. Lancet 1993; 341: 383–4PubMedCrossRefGoogle Scholar
  110. 110.
    Gill PS, Tulpule A, Espina BM et al. Paclitaxel is safe and effective in the treatment of advanced AIDS-related Kaposi’s sarcoma. J Clin Oncol 1999; 17: 1876–83PubMedGoogle Scholar
  111. 111.
    Welles L, Saville MW, Lietzau J et al. Phase II trial with dose titration of paclitaxel for the therapy of human immunodeficiency virus-associated Kaposi’s sarcoma. J Clin Oncol 1998; 16: 1112–21PubMedGoogle Scholar
  112. 112.
    Tulpule A, Groopman J, Saville MW et al. Multicenter trial of low-dose paclitaxel in patients with advanced AIDS-related Kaposi sarcoma. Cancer 2002; 95: 147–54PubMedCrossRefGoogle Scholar
  113. 113.
    Aboulafia DM, Norris D, Henry D et al. 9-cis-retinoic acid capsules in the treatment of AIDS-related Kaposi sarcoma: results of a phase 2 multicenter clinical trial. Arch Dermatol 2003; 139: 178–86PubMedCrossRefGoogle Scholar
  114. 114.
    Bernstein ZP, Chanan-Khan A, Miller KC et al. A multicenter phase II study of the intravenous administration of liposomal tretinoin in patients with acquired immunodeficiency syndrome-associated Kaposi’s sarcoma. Cancer 2002; 95: 2555–61PubMedCrossRefGoogle Scholar
  115. 115.
    Ledergerber B, Telenti A, Effer M. Risk of HIV related Kaposi’s sarcoma and non- Hodgkin’s lymphoma with potent antiretroviral therapy: prospective cohort study. BJM 1999; 319: 23–4CrossRefGoogle Scholar
  116. 116.
    Murphy M, Armstrong D, Sepkowitz KA et al. Regression of AIDS-related Kaposi’s sarcoma following treatment with an HIV-1 protease inhibitor. AIDS 1997; 11: 261–2PubMedGoogle Scholar
  117. 117.
    Aboulafia DM. Regression of acquired immunodeficiency syndrome-related pulmonary Kaposi’s sarcoma after highly active antiretroviral therapy. Mayo Clin Proc 1998; 73: 439–43PubMedCrossRefGoogle Scholar
  118. 118.
    Levine AM, Tulpule A. Clinical aspects and management of AIDS-related Kaposi’s sarcoma. Eur J Cancer 2001; 37: 1288–95PubMedCrossRefGoogle Scholar
  119. 119.
    Cattelan A, Calabro M, Gasperini P et al. Acquired immune deficiency syndrome- related Kaposi’s sarcoma regression after highly active antiretroviral therapy: biologic correlates of clinical outcome. J Natl Cancer Inst Monogr 2001; 28: 44–9PubMedGoogle Scholar
  120. 120.
    Boivin G, Gaudreau A, Routy JP. Evaluation of the human herpes virus 8 DNA load in blood and Kaposi’s sarcoma skin lesions from AIDS patients on highly active antiretroviral therapy. AIDS 2000; 14: 1907–10PubMedCrossRefGoogle Scholar
  121. 121.
    Strickler HD, Goedert JJ, Bethke FR et al. Human herpesvirus 8 cellular immune responses in homosexual men. J Infect Dis 1999; 180: 1682–5PubMedCrossRefGoogle Scholar
  122. 122.
    Gill J, Bourboulia D, Wilkinson J et al. Prospective study of the effects of antiretroviral therapy on Kaposi sarcoma: associated herpesvirus infection in patients with and without Kaposi sarcoma. J Acquir Immune Defic Syndr 2002; 31: 384–90PubMedCrossRefGoogle Scholar
  123. 123.
    Esdaile B, Davis M, Portsmouth S et al. The immunological effects of concomitant highly active antiretroviral therapy and liposomal anthracycline treatment of HIV-1-associated Kaposi’s sarcoma. AIDS 2002; 16: 2344–7PubMedCrossRefGoogle Scholar
  124. 124.
    Toschi E, Sgadari C, Monini P et al. Treatment of Kaposi’s sarcoma-an update. Anticancer Drugs 2002; 13: 977–87PubMedCrossRefGoogle Scholar
  125. 125.
    Kedes DH, Ganem D. Sensitivity of Kaposi’s sarcoma-associated herpesvirus replication to antiviral drugs: implications for potential therapy. J Clin Invest 1997; 99: 2082–6PubMedCrossRefGoogle Scholar
  126. 126.
    Robles R, Lugo D, Gee L et al. Effect of antiviral drugs used to treat cytome- galovirus end-organ disease on subsequent course of previously diagnosed Kaposi’s sarcoma in patients with AIDS. J Acquir Immune Defic Syndr Hum Retrovirol 1999; 20: 34–8PubMedCrossRefGoogle Scholar
  127. 127.
    Martin DF, Kuppermann BD, Wolitz RA et al. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N Engl J Med 1999; 340: 1063–70PubMedCrossRefGoogle Scholar
  128. 128.
    Cordero E, Lopez-Cortes LF, Viciana P et al. Foscarnet and AIDS-associated Kaposi’s sarcoma. AIDS 1997; 11: 1787–8PubMedGoogle Scholar
  129. 129.
    Hammoud Z, Parenti DM, Simon GL. Abatement of cutaneous Kaposi’s sarcoma associated with cidofovir treatment. Clin Infect Dis 1998; 26: 1233PubMedCrossRefGoogle Scholar
  130. 130.
    Little RF, Merced-Galindez F, Staskus K et al. A pilot study of cidofovir in patients with Kaposi sarcoma. J Infect Dis 1998; 187: 149–53CrossRefGoogle Scholar
  131. 131.
    Tappero JW, Berger TG, Kaplan LD et al. Cryotherapy for cutaneous Kaposi’s sarcoma (KS) associated with acquired immune deficiency syndrome (AIDS): a phase II trial. J Acquir Immune Defic Syndr 1991; 4: 839–46PubMedCrossRefGoogle Scholar
  132. 132.
    Brenner B, Rakowsky E, Katz A et al. Tailoring treatment for classical Kaposi’s sarcoma: comprehensive clinical guidelines. Int J Oncol 1999 14: 1097–1102PubMedGoogle Scholar
  133. 133.
    Holecek MJ, Harwood AR. Radiotherapy of Kaposi’s sarcoma. Cancer 1978; 41: 1733–8PubMedCrossRefGoogle Scholar
  134. 134.
    el-Akkad S, Bull CA, el-Senoussi MA et al. Kaposi’s sarcoma and its management by radiotherapy. Arch Dermatol 1986; 122: 1396–9PubMedCrossRefGoogle Scholar
  135. 135.
    Groopman JE, Gottlieb MS, Goodman J et al. Kaposi’s sarcoma in AIDS: the role of radiation therapy. Front Radiat Ther Oncol 1985; 19: 126–32Google Scholar
  136. 136.
    Nisce LZ, Safai B, Poussin-Rosillo H. Once weekly total and subtotal skin electron beam therapy for Kaposi’s sarcoma. Cancer 1981; 47: 640–4PubMedCrossRefGoogle Scholar
  137. 137.
    Berson AM, Quivey JM, Harris W et al. Radiation therapy for AIDS-related Kaposi’s Sarcoma. Int J Radiat Oncol Biol Phys 1990; 19: 569–75PubMedCrossRefGoogle Scholar
  138. 138.
    deWit R, Smit WG, Veenhof KH et al. Palliative radiation therapy for AIDS- associated Kaposi’s sarcoma by using a single fraction of 800 cGy. Radiother Oncol 1990; 19: 131–6PubMedCrossRefGoogle Scholar
  139. 139.
    Stelzer KJ, Griffin TW. A randomized prospective trial of radiation therapy for AIDS-associated Kaposi’s sarcoma. Int J Radiat Oncol Biol Phys 1993; 27: 1057–61PubMedCrossRefGoogle Scholar
  140. 140.
    Watkins EB, Findlay P, Gelmann E et al. Enhanced mucosal reactions in AIDS patients receiving oropharyngeal irradiation. Int J Radiat Oncol Biol Phys 1987; 13: 1403–8PubMedCrossRefGoogle Scholar
  141. 141.
    Schweitzer VG, Visscher D. Photodynamic therapy for treatment of AIDS-related oral Kaposi’s sarcoma. Otolaryngol Head Neck Surg 1990; 102: 639–49PubMedGoogle Scholar
  142. 142.
    Marchell N, Alster TS. Successful treatment of cutaneous Kaposi’s sarcoma by the 585-nm pulsed dye laser. Dermatol Surg 1997; 23: 973–5PubMedCrossRefGoogle Scholar
  143. 143.
    Epstein JB, Lozada-Nur F, McLeod WA et al. Oral Kaposi’s sarcoma in acquired immunodeficiency syndrome: review of management and report of the efficacy of intralesional vinblastine. Cancer 1989; 64: 2424–30PubMedCrossRefGoogle Scholar
  144. 144.
    Boudreaux AA, Smith LL, Cosby CD et al. Intralesional vinblastine for cutaneous Kaposi’s sarcoma associated with acquired immunodeficiency syndrome: a clinical trial to evaluate efficacy and discomfort associated with infection. J Am Acad Dermatol 1993; 28: 61–5PubMedCrossRefGoogle Scholar
  145. 145.
    Walmsley S, Northfelt DW, Melosky B et al. Treatment of AIDS-related cutaneous Kaposi’s sarcoma with topical alitretinoin (9-cis-retinoic acid) gel. Panretin Gel North American Study Group. J Acquir Immune Defic Syndr 1999; 22: 235–46PubMedGoogle Scholar
  146. 146.
    Bodsworth NJ, Bloch M, Bower M et al. International Panretin Gel KS Study Group. Phase III vehicle-controlled, multi-centered study of topical alitretinoin gel 0.1% in cutaneous AIDS-related Kaposi’s sarcoma. Am J Clin Dermatol 2001; 2: 77–87PubMedCrossRefGoogle Scholar
  147. 147.
    Tossing G. New developments in interferon therapy. Eur J Med Res 2001; 6: 47–65PubMedGoogle Scholar
  148. 148.
    Tossing G. New perspectives in anti-HIV treatment strategies: structured therapy interruptions and immunemodulatory cytokines. Current News No. 222, Supplement to Infection 2001; 29: 1–4Google Scholar
  149. 149.
    Nieto L, Angel J, Gazzard B et al. Antiviral activity and tolerability of PegIntron in HIV patients failing HAART [abstract 115]. The 1st IAS Conference on HIV Pathogenesis and Treatment; 2001 Jul 8–11; Buenos AiresGoogle Scholar
  150. 150.
    Hatzakis A, Gargalianos P, Kiosses V et al. Low dose interferon-alfa monotherapy in treatment-naive individuals with HIV-1 infection: evidence of potent suppression of viral replication. J Interferon Cytokine Res 2001; 21: 861–9PubMedCrossRefGoogle Scholar
  151. 151.
    Emilie D, Burgard M, Lascoux-Combe C et al. Early control of HIV replication in primary HIV-1 infection treated with antiretroviral drugs and pegylated IFN alpha: results from the Primoferon A (ANRS 086) Study. AIDS 2001; 15: 1435–7PubMedCrossRefGoogle Scholar
  152. 152.
    D’Amato RJ, Loughnan MS, Flynn E et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994; 91: 4082–5PubMedCrossRefGoogle Scholar
  153. 153.
    Thomas DA, Kantarjian HM. Current role of thalidomide in cancer treatment. Curr Opin Oncol 2000; 12: 564–73PubMedCrossRefGoogle Scholar
  154. 154.
    Fife K, Howard MR, Gracie F et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma and correlation with HHV8 titre. Int J STD AIDS 1998; 9: 751–5PubMedCrossRefGoogle Scholar
  155. 155.
    Politi P, Reboredo G, Losso M et al. Phase I trial of thalidomide in AIDS-related KS [abstract]. Proc Am Soc Clin Oncol 1998; 17: 45Google Scholar
  156. 156.
    Little RF, Wyvill KM, Pluda JM et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol 2000; 18: 2593–602PubMedGoogle Scholar
  157. 157.
    Millauer B, Wizigmann-Voos S, Schnurch H et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835–46PubMedCrossRefGoogle Scholar
  158. 158.
    Millauer B, Shawver LK, Plate KH et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–9PubMedCrossRefGoogle Scholar
  159. 159.
    Fong TA, Shawver LK, Sun L et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (FIk- 1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106PubMedGoogle Scholar
  160. 160.
    Miles SA, Arasteh K, Gill P et al. A multicenter dose-escalating study of SU5416 in AIDS-related Kaposi’s sarcoma [abstract]. Proc Am Soc Clin Oncol 2000; 19: 176aGoogle Scholar
  161. 161.
    Via LE, Gore-Langton RE, Pluda JM. Clinical trials referral resource: current clinical trials administering the antiangiogenesis agent SU5416. Oncology 2000; 14: 1312–23PubMedGoogle Scholar
  162. 162.
    Mesters RM, Padro T, Bieker R et al. Stable remission after administration of the receptor tyrosine kinase inhibitor SU5416 in a patient with refractory acute myeloid leukemia. Blood 2001; 98: 241–3PubMedCrossRefGoogle Scholar
  163. 163.
    Tulpule A, Scadden DT, Espina BM et al. Results of a randomized study of IM862 nasal solution in the treatment of AIDS-related Kaposi’s sarcoma. J Clin Oncol 2000; 18: 716–23PubMedGoogle Scholar
  164. 164.
    Dezube BJ, Von Roenn JH, Holden-Wiltse J et al. Fumagillin analog in the treatment of Kaposi’s sarcoma: a phase I AIDS Clinical Trial Group study. AIDS Clinical Trial Group No. 215 Team. J Clin Oncol 1998; 16: 1444–9PubMedGoogle Scholar
  165. 165.
    Sternlicht MD, Bergers G. Matrix metalloproteinases are emerging targets in anticancer therapy; status and prospects. Emerging Ther Targets 2000; 4: 609–33CrossRefGoogle Scholar
  166. 166.
    Rader C, Popkov M, Neves JA et al. Integral alpha(v)beta3 targeted therapy for Kaposi’s sarcoma with an in vitro evolved antibody. FASEB J 2002; 16: 2000–2PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  • Ulrich R. Hengge
    • 1
  • Gudrun Tossing
    • 2
  • Vivian Kouri
    • 3
  • Stefan Fruehauf
    • 4
  1. 1.Department of DermatologyHeinrich-Heine-UniversityDuesseldorfGermany
  2. 2.Department of HepatologyEssex Pharma GmbHMunichGermany
  3. 3.STI Laboratory, Department of VirologyInstitute of Tropical Medicine “Pedro Kouri”Havana CityCuba
  4. 4.Department of HematologyOncology and Rheumatology, University of HeidelbergHeidelbergGermany

Personalised recommendations