American Journal of Cancer

, Volume 1, Issue 6, pp 409–422 | Cite as

Hyperuricemia in Patients with Cancer

  • Raul C. Ribeiro
  • Ching-Hon Pui
Review Article


Hyperuricemia is a common early complication in patients with hematological malignancies treated with intensive chemotherapy. It results from the breakdown of nuclear proteins leading to increased blood levels of hypoxanthine and xanthine. These compounds are degraded into uric acid by the enzyme xanthine oxidase. Because the mechanisms of excretion of uric acid are limited in humans and blood levels are near saturation level, a common complication of hyperuricemia is renal failure resulting from the deposition of uric acid in renal tubules.

When renal insufficiency occurs in conjunction with other metabolic aberrations, such as hyperkalemia, hyperphosphatemia, and hypocalcemia, this process is termed tumor lysis syndrome. Patients with acute lymphoblastic leukemia and non-Hodgkin’s lymphoma, particularly Burkitt’s lymphoma, are at greatest risk because of the high sensitivity of the cells to chemotherapy. Other factors associated with increased risk of hyperuricemia and tumor lysis syndrome include hyperleukocytosis, massive organomegaly, renal enlargement, extrinsic compression of the genitourinary tract, and elevated serum lactate dehydrogenase activity. Conventionally, patients at risk of developing hyperuricemia receive alkalinized fluids and allopurinol, an inhibitor of the enzyme xanthine oxidase. These measures have been effective in reducing mortality associated with metabolic complications during tumor lysis in the majority of the cases. However, as many as 25% of patients at high-risk of developing tumor lysis syndrome require dialysis, and some of them have the treatment course altered because of these complications.

Recently, a synthetic recombinant form of the enzyme urate oxidase, rasburicase has become available in the US. This enzyme acts directly on urate and degrades it to allantoin, a much more soluble compound.


Uric Acid Allopurinol Hyperuricemia Tumor Lysis Syndrome Hyperphosphatemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported in part by grant CA-21765 from the National Institutes of Health (US Department of Health and Human Services), a grant from Sanofi-Synthelabo, a Center for Excellence grant from the State of Tennessee, and the American Lebanese Syrian Associated Charities (ALSAC). C-H Pui is the American Cancer Society - FM Kirby Clinical Research Professor.


  1. 1.
    Merrill D, Jackson H. The renal complications of leukemia. N Engl J Med 1943; 228(9): 271–6CrossRefGoogle Scholar
  2. 2.
    Rieselbach RE, Bentzel CJ, Cotlove E, et al. Uric acid excretion and renal function in the acute hyperuricemia of leukemia. Am J Med 1964; 37: 872–84PubMedCrossRefGoogle Scholar
  3. 3.
    Conger JD. Acute uric acid nephropathy. Med Clin North Am 1990; 74(4): 859–71PubMedGoogle Scholar
  4. 4.
    Perry MC, Hoagland HC, Wagoner RD. Uric acid nephropathy. JAMA 1976; 236(8): 961–2PubMedCrossRefGoogle Scholar
  5. 5.
    Zusman J, Brown DM, Nesbit ME. Hyperphosphatemia, hyperphosphaturia and hypocalcemia in acute lymphoblastic leukemia. N Engl J Med 1973; 289(25): 1335–40PubMedCrossRefGoogle Scholar
  6. 6.
    Cadman EC, Lunberg WB, Bertino JR. Hyperphosphatermia and hypocalcemia accompanying rapid cell lysis in a patient with Burkitt’s lymphoma and Burkitt cell leukemia. Am J Med 1977; 62(2): 283–90PubMedCrossRefGoogle Scholar
  7. 7.
    Pui CH. Optimal treatment of malignancies associated with hyperuricemia? Semin Hematol 2001; 38Suppl. 10: 1–3CrossRefGoogle Scholar
  8. 8.
    Cohen LF, Balow JE, Magrath IT, et al. Acute tumor lysis syndrome: a review of 37 patients with Burkitt’s lymphoma. Am J Med 1980; 68(4): 486–91PubMedCrossRefGoogle Scholar
  9. 9.
    Arrambide K, Toto RD. Tumor lysis syndrome. Semin Nephrol 1993; 13(3): 273–80PubMedGoogle Scholar
  10. 10.
    Jeha S. Tumor lysis syndrome. Semin Hematol 2001; 38(4 Suppl. 10): 4–8PubMedCrossRefGoogle Scholar
  11. 11.
    Jones DP, Stapleton FB, Kalwinsky D, et al. Renal dysfunction and hyperuricemia at presentation and relapse of acute lymphoblastic leukemia. Med Pediatr Oncol 1990; 18(4): 283–6PubMedCrossRefGoogle Scholar
  12. 12.
    Morley CJ, Houston IB, Morris-Jones P. Acute renal failure and gout as presenting features of acute lymphoblastic leukaemia. Arch Dis Child 1976; 51(9): 723–5PubMedCrossRefGoogle Scholar
  13. 13.
    Larsen G, Loghman-Adham M. Acute renal failure with hyperuricemia as initial presentation of leukemia in children. J Pediatr Hematol Oncol 1996; 18(2): 191–4PubMedCrossRefGoogle Scholar
  14. 14.
    Levin M, Cho S. Acute tumor lysis syndrome in high grade lymphoblastic lymphoma after a prolonged episode of fever. Med Pediatr Oncol 1996; 26(6): 417–8PubMedCrossRefGoogle Scholar
  15. 15.
    Jasek AM, Day HJ. Acute spontaneous tumor lysis syndrome. Am J Hematol 1994; 47(2): 129–31PubMedCrossRefGoogle Scholar
  16. 16.
    Loosveld OJ, Schouten HC, Gaillard CA, et al. Acute tumour lysis syndrome in a patient with acute lymphoblastic leukemia after a single dose of prednisone [published erratum appears in Br J Haematol 1991 Mar; 77 (3): 446]. Br J Haematol 1991; 77(1): 122–3PubMedCrossRefGoogle Scholar
  17. 17.
    Malik IA, Abubakar S, Alam F, et al. Dexamethasone-induced tumor lysis syndrome in high-grade non-Hodgkin’s lymphoma. South Med J 1994; 87(3): 409–11PubMedCrossRefGoogle Scholar
  18. 18.
    Sparano J, Ramirez M, Wiernik PH. Increasing recognition of corticosteroid-induced tumor lysis syndrome in non-Hodgkin’s lymphoma. Cancer 1990; 65(5): 1072–3PubMedCrossRefGoogle Scholar
  19. 19.
    Simmons ED, Somberg KA. Acute tumor lysis syndrome after intrathecal methotrexate administration. Cancer 1991; 67(8): 2062–5PubMedCrossRefGoogle Scholar
  20. 20.
    Lobe TE, Karkera MS, Custer MD, et al. Fatal refractory hyperkalemia due to tumor lysis during primary resection for hepatoblastoma. J Pediatr Surg 1990; 25(2): 249–50PubMedCrossRefGoogle Scholar
  21. 21.
    Cech P, Block JB, Cone LA, et al. Tumor lysis syndrome after tamoxifen flare. N Engl J Med 1986; 315(4): 263–4PubMedCrossRefGoogle Scholar
  22. 22.
    Rigas D, Duerst M, Jump ME, et al. The nucleic acids and other phosphorus compounds of human leukemic leukocytes: relation to cell maturity. J Lab Clin Med 1956; 48(3): 356–78PubMedGoogle Scholar
  23. 23.
    Przepiorka D, Gonzales-Chambers R. Acute tumor lysis syndrome in a patient with chronic myelogenous leukemia in blast crisis: role of high-dose Ara-C. Bone Marrow Transplant 1990; 6(4): 281–2PubMedGoogle Scholar
  24. 24.
    Lotfi M, Brandwein JM. Spontaneous acute tumor lysis syndrome in acute myeloid leukemia?: a single case report with discussion of the literature. Leuk Lymphoma 1998; 29(5-6): 625–8PubMedGoogle Scholar
  25. 25.
    List AF, Kummet TD, Adams JD, et al. Tumor lysis syndrome complicating treatment of chronic lymphocytic leukemia with fludarabine phosphate. Am J Med 1990; 89(3): 388–90PubMedCrossRefGoogle Scholar
  26. 26.
    McCroskey RD, Mosher DF, Spencer CD, et al. Acute tumor lysis syndrome and treatment response in patients treated for refractory chronic lymphocytic leukemia with short-course, high-dose cytosine arabinoside, cisplatin, and etoposide. Cancer 1990; 66(2): 246–50PubMedCrossRefGoogle Scholar
  27. 27.
    Schifter T, Cohen A, Lewinski UH. Severe tumor lysis syndrome following splenic irradiation. Am J Hematol 1999; 60(1): 75–6PubMedCrossRefGoogle Scholar
  28. 28.
    Nomdedeu J, Martino R, Sureda A, et al. Acute tumor lysis syndrome complicating conditioning therapy for bone marrow transplantation in a patient with chronic lymphocytic leukemia. Bone Marrow Transplant 1994; 13(5): 659–60PubMedGoogle Scholar
  29. 29.
    Castro MP, Van Auken J, Spencer-Cisek P, et al. Acute tumor lysis syndrome associated with concurrent biochemotherapy of metastatic melanoma: a case report and review of the literature. Cancer 1999; 85(5): 1055–9PubMedCrossRefGoogle Scholar
  30. 30.
    Drakos P, Bar-Ziv J, Catane R. Tumor lysis syndrome in nonhematologic malignancies: report of a case and review of the literature. Am J Clin Oncol 1994; 17(6): 502–5PubMedCrossRefGoogle Scholar
  31. 31.
    Rostom AY, El Hussainy G, Kandil A, et al. Tumor lysis syndrome following hemi-body irradiation for metastatic breast cancer. Ann Oncol 2000; 11(10): 1349–51PubMedCrossRefGoogle Scholar
  32. 32.
    Tomlinson GC, Solberg LA. Acute tumor lysis syndrome with metastatic medulloblastoma: a case report. Cancer 1984; 53(8): 1783–5PubMedCrossRefGoogle Scholar
  33. 33.
    Arseneau J, Canellos G, Banks P, et al. American Burkitt’s lymphoma: a clinicopathologic study of 30 cases: I. clinical factors relating to prolonged survival. Am J Med 1975; 58(3): 314–21PubMedCrossRefGoogle Scholar
  34. 34.
    Brouland JP, Meeus F, Rossert J, et al. Primary bilateral B-cell renal lymphoma: a case report and review of the literature. Am J Kidney Dis 1994; 24(4): 586–9PubMedGoogle Scholar
  35. 35.
    Obrador GT, Price B, O’Meara Y, et al. Acute renal failure due to lymphomatous infiltration of the kidneys. J Am Soc Nephrol 1997; 8(8): 1348–54PubMedGoogle Scholar
  36. 36.
    Seidemann K, Meyer U, Jansen P, et al. Impaired renal function and tumor lysis syndrome in pediatric patients with non-Hodgkin’s lymphoma and B-ALL: observations from the BFM-trials. Klin Padiatr 1998; 210(4): 279–84PubMedCrossRefGoogle Scholar
  37. 37.
    Stapleton F, Strother D, Roy S, et al. Acute renal failure at onset of therapy for advanced stage Burkitt lymphoma and B cell acute lymphoblastic leukemia. Pediatrics 1988; 82(6): 863–9PubMedGoogle Scholar
  38. 38.
    Arseneau JC, Bagley CM, Anderson T, et al. Hyperkalaemia, a sequel to chemotherapy of Burkitt’s lymphoma. Lancet 1973; I(7793): 10–4CrossRefGoogle Scholar
  39. 39.
    Brereton HD, Anderson T, Johnson RE, et al. Hyperphosphatemia and hypocalcemia in Burkitt lymophoma: complications of chemotherapy. Arch Intern Med 1975; 135(2): 307–9PubMedCrossRefGoogle Scholar
  40. 40.
    Ablin A, Stephens BG, Hirata T, et al. Nephropathy, xanthinuria, and orotic aciduria complicating Burkitt’s lymphoma treated with chemotherapy and allopurinol. Metabolism 1972; 21(8): 771–8PubMedCrossRefGoogle Scholar
  41. 41.
    Band P, Silverberg D, Henderson J, et al. Xanthine nephropathy in a patient wtih lymphosarcoma treated with allopurinol. N Engl J Med 1970; 283(7): 354–7PubMedCrossRefGoogle Scholar
  42. 42.
    Greene ML, Fujimoto WY, Seegmiller JE. Urinary xanthine stones: a rare complications of allopurinol therapy. N Engl J Med 1969; 280(8): 426–7PubMedCrossRefGoogle Scholar
  43. 43.
    Holland P, Holland MH. Prevention and management of acute hyperuricemia in childhood leukemia. J Pediatr 1998; 72(3): 358–66Google Scholar
  44. 44.
    Krakoff I. Xanthine oxidase inhibition in the management of hyperuricemia in leukemias and lymphomas. Arthritis Rheum 1965; 8(5): 772–9PubMedCrossRefGoogle Scholar
  45. 45.
    DeConti R, Calabresi P. Use of allopurinol for prevention and control of hyperuricemia in patients with neoplastic disease. N Engl J Med 1966; 274(9): 481–6PubMedCrossRefGoogle Scholar
  46. 46.
    Hitchings GH. Effects of allopurinol in relation to purine biosynthesis. Ann Rheum Dis 1966; 25(6): 601–7PubMedGoogle Scholar
  47. 47.
    Bowman WP, Shuster JJ, Cook B, et al. Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: a pediatric oncology group study. J Clin Oncol 1996; 14(4): 1252–61PubMedGoogle Scholar
  48. 48.
    Pui CH. Rasburicase: a potent uricolytic agent? Expert Opin Pharmacother 2002; 3: 433–52PubMedCrossRefGoogle Scholar
  49. 49.
    Laboureur P, Langlois C. Urate oxidase of Aspergillus flavus: I. Isolation, purification, properties. Bull Soc Chim Biol (Paris) 1968; 50(4): 811–25Google Scholar
  50. 50.
    Laboureur P, Langlois C. Urate oxidase of Aspergillus flavus: II. metabolism, inhibition, specificity. Bull Soc Chim Biol (Paris) 1968; 50(4): 827–41Google Scholar
  51. 51.
    Kissel P, Lamarche M, Royer R. Modification of uricaemia and the excretion of uric acid nitrogen by an enzyme of fungal origin. Nature 1968; 217(123): 72–4PubMedCrossRefGoogle Scholar
  52. 52.
    Kissel P, Mauuary G, Royer R, et al. Treatment of malignant haemopathies and urate oxidase [letter]. Lancet 1975; I(7900): 229CrossRefGoogle Scholar
  53. 53.
    Chanteclair G, Olive D. Acute hyperuricemic kidney failure: treatment by uricozyme [letter]. Nouv Presse Med 1975; 4(31): 2274PubMedGoogle Scholar
  54. 54.
    Masera G, Jankovic M, Zurlo MG, et al. Urate-oxidase prophylaxis of uric acid-induced renal damage in childhood leukemia. J Pediatr 1982; 100(1): 152–5PubMedCrossRefGoogle Scholar
  55. 55.
    Masera G, Jankovic M. Tumor lysis syndrome, case report and review of the literature. Ann Oncol 1997; 8(1): 97PubMedCrossRefGoogle Scholar
  56. 56.
    Pui CH, Relling MV, Lascombes F, et al. Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia 1997; 11(11): 1813–6PubMedCrossRefGoogle Scholar
  57. 57.
    Mahmoud HH, Leverger G, Patte C, et al. Advances in the management of malignancy-associated hyperuricaemia. Br J Cancer 1998; 77Suppl. 4: 18–20PubMedCrossRefGoogle Scholar
  58. 58.
    Pui CH. Urate oxidase in the prophylaxis or treatment of hyperuricemia: the United States experience. Semin Hematol 2001; 38(4 Suppl. 10): 13–21PubMedCrossRefGoogle Scholar
  59. 59.
    Pui CH, Mahmoud HH, Wiley JM, et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J Clin Oncol 2001; 19(3): 697–704PubMedGoogle Scholar
  60. 60.
    Pui CH, Jeha S, Irwin D, et al. Recombinant urate oxidase (rasburicase) in the prevention and treatment of malignancy-associated hyperuricemia in pediatric and adult patients: results of a compassionate-use trial. Leukemia 2001; 15(10): 1505–9PubMedCrossRefGoogle Scholar
  61. 61.
    Goldman SC, Holcenberg JS, Finklestein JZ, et al. A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 2001; 97(10): 2998–3003PubMedCrossRefGoogle Scholar
  62. 62.
    Moriwaki Y, Yamamoto T, Higashino K. Enzymes involved in purine metabolism: a review of histochemical localization and functional implications. Histol Histopathol 1999; 14(4): 1321–40PubMedGoogle Scholar
  63. 63.
    Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A 1989; 86(23): 9412–6PubMedCrossRefGoogle Scholar
  64. 64.
    Wu XW, Muzny DM, Lee CC, et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 1992; 34(1): 78–84PubMedCrossRefGoogle Scholar
  65. 65.
    Proctor P. Similar functions of uric acid and ascorbate in man? Nature 1970; 228(274): 868PubMedCrossRefGoogle Scholar
  66. 66.
    Friedman TB, Polanco GE, Appold JC, et al. On the loss of uricolytic activity during primate evolution: I. silencing of urate oxidase in a hominoid ancestor. Comp Biochem Physiol B 1985; 81(3): 653–9PubMedCrossRefGoogle Scholar
  67. 67.
    Ames BN, Cathcart R, Schwiers E, et al. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981; 78(11): 6858–62PubMedCrossRefGoogle Scholar
  68. 68.
    Scott GS, Hooper DC. The role of uric acid in protection against peroxynitrite-mediated pathology. Med Hypotheses 2001; 56(1): 95–100PubMedCrossRefGoogle Scholar
  69. 69.
    Scott JT, Holloway VP, Glass HI, et al. Studies of uric acid pool size and turnover rate. Ann Rheum Dis 1969; 28(4): 366–73PubMedCrossRefGoogle Scholar
  70. 70.
    Glass HI, Scott JT, Gilles DC, et al. The interpretation of radioactive uric acid turnover data. Strahlentherapie [Sonderb] 1968; 67: 223–33Google Scholar
  71. 71.
    Lang F, Greger R, Oberleithner H, et al. Renal handling of urate in healthy man in hyperuricaemia and renal insufficiency: circadian fluctuation, effect of water diuresis and of uricosuric agents. Eur J Clin Invest 1980; 10(4): 285–92PubMedCrossRefGoogle Scholar
  72. 72.
    Lang F, Greger R, Sporer H, et al. Renal handling of urate and oxalate: possible implications for urolithiasis. Urol Res 1979; 7(3): 143–8PubMedCrossRefGoogle Scholar
  73. 73.
    Coe FL, Moran E, Kavalich AG. The contribution of dietary purine over-consumption to hyperpuricosuria in calcium oxalate stone formers. J Chronic Dis 1976; 29(12): 793–800PubMedCrossRefGoogle Scholar
  74. 74.
    Dodge HJ, Mikkelsen WM. Observations on the distribution of serum uric acid levels in participants of the Tecumseh, Michigan, Community Health Studies: a comparison of results of one method used at two different times and of two methods used simultaneously. J Chronic Dis 1970; 23(3): 161–72PubMedCrossRefGoogle Scholar
  75. 75.
    Munan L, Kelly A, PetitClerc C. Serum urate levels between ages 10 and 14: changes in sex trends. J Lab Clin Med 1977; 90(6): 990–6PubMedGoogle Scholar
  76. 76.
    Campion EW, Glynn RJ, de Labry LO. Asymptomatic hyperuricemia: risks and consequences in the normative aging study. Am J Med 1987; 82(3): 421–6PubMedCrossRefGoogle Scholar
  77. 77.
    Price CP, James DR. Analytical reviews in clinical biochemistry: the measurement of urate. Ann Clin Biochem 1988; 25 (Pt 5): 484–98PubMedGoogle Scholar
  78. 78.
    Puig JG, Mateos FA, Ramos TH, et al. Sex differences in uric acid metabolism in adults: evidence for a lack of influence of estradiol-17 beta (E2). Adv Exp Med Biol 1986; 195 Pt A: 317–23PubMedCrossRefGoogle Scholar
  79. 79.
    Edwards NL, Fox IH. Disorders associated with purine and pyrimidine metabolism. In: Cohen MP, Foa PP, editors. Special topics in endocrinology and metabolism. New York: Alan R. Liss, 95–140Google Scholar
  80. 80.
    Stapleton FB. Renal uric acid clearance in human neonates. J Pediatr 1983; 103(2): 290–4PubMedCrossRefGoogle Scholar
  81. 81.
    Stapleton FB, Linshaw MA, Hassanein K, et al. Uric acid excretion in normal children. J Pediatr 1978; 92(6): 911–4PubMedCrossRefGoogle Scholar
  82. 82.
    Klinenberg JR. The effectiveness of allopurinol in the treatment of gout. Arthritis Rheum 1965; 8(5): 891–5PubMedCrossRefGoogle Scholar
  83. 83.
    Conger J, Falk S, Guggenheim S, et al. A micropuncture study of the early phase of acute urate nephropathy. J Clin Invest 1976; 58: 681–9PubMedCrossRefGoogle Scholar
  84. 84.
    Conger J, Falk S. Intrarenal dynamics in the pathogenesis and prevention of acute urate nephropathy. J Clin Invest 1977; 59(5): 786–93PubMedCrossRefGoogle Scholar
  85. 85.
    Wu X, Wakamiya M, Vaishnav S, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A 1994; 91(2): 742–6PubMedCrossRefGoogle Scholar
  86. 86.
    Fessel JW. Renal outcomes of gout and hyperuricemia. Am J Med 1979; 67: 74–82PubMedCrossRefGoogle Scholar
  87. 87.
    Seegmiller JE, Rosenbloom FM, Kelley WN. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 1967; 155(770): 1682–4PubMedCrossRefGoogle Scholar
  88. 88.
    Stout JT, Caskey CT. The Lesch-Nyhan syndrome: clinical, molecular and genetic aspects. Trends Genet 1988; 4(6): 175–8PubMedCrossRefGoogle Scholar
  89. 89.
    Lorentz WB, Burton BK, Trillo A, et al. Failure to thrive, hyperuricemia, and renal insufficiency in early infancy secondary to partial hypoxanthine-guanine phosphoribosyl transferase deficiency. J Pediatr 1984; 104(1): 94–7PubMedCrossRefGoogle Scholar
  90. 90.
    Ahmadian Y, Lewy PR. Possible urate nephropathy of the newborn infant as a cause of transient renal insufficiency. J Pediatr 1977; 91(1): 96–100PubMedCrossRefGoogle Scholar
  91. 91.
    Gottlieb RP, Roeloffs S, Galler-Rimm G, et al. Transient renal insufficiency in the neonate related to hyperuricemia and hyperuricosuria. Child Nephrol Urol 1991; 11(2): 111–4PubMedGoogle Scholar
  92. 92.
    Adler R, Robinson R, Pazdral P, et al. Hyperuricemia in diarrheal dehydration. Am J Dis Child 1982; 136(3): 211–3PubMedGoogle Scholar
  93. 93.
    Shenoi A, Phadke KD. Uric acid nephropathy as an unusual cause of actual renal failure in a neonate. Indian Pediatr 2000; 37(3): 322–4PubMedGoogle Scholar
  94. 94.
    Knöchel JP, Dotin LN, Hamburger RJ. Heat stress, exercise, and muscle injury: effects on urate metabolism and renal function. Ann Intern Med 1974; 81(3): 321–8PubMedGoogle Scholar
  95. 95.
    Warren DJ, Leitch AG, Leggett RJ. Hyperuricaemic acute renal failure after epileptic seizures. Lancet 1975; II(7931): 385–7CrossRefGoogle Scholar
  96. 96.
    Meisel AD, Diamond HS. Hyperuricosuria in the Fanconi syndrome. Am J Med Sci 1977; 273(1): 109–15PubMedCrossRefGoogle Scholar
  97. 97.
    Baldree LA, Stapleton FB. Uric acid metabolism in children. Pediatr Clin North Am 1990; 37(2): 391–418PubMedGoogle Scholar
  98. 98.
    Jones DP, Mahmoud H, Chesney RW. Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol 1995; 9(2): 206–12PubMedCrossRefGoogle Scholar
  99. 99.
    Holland J, Sharpe W, Mamrod L, et al. Urate excretion in patients with acute leukemia. J Natl Cancer Inst 1959; 23(5): 1097–105PubMedGoogle Scholar
  100. 100.
    Mir MA. Renal excretion of uric acid and its relation to relapse and remission in acute myeloid leukaemia. Nephron 1977; 19(2): 69–80PubMedCrossRefGoogle Scholar
  101. 101.
    Hebert L, Lemann JJ, Petersen J, et al. Studies of the mechanism by which phosphate infusion lowers serum calcium concentration. J Clin Invest 1966; 45(12): 1886–94PubMedCrossRefGoogle Scholar
  102. 102.
    Allon M, Llach F. Hyperphosphatemia, hypocalcemia, and renal failure in a patient with acute leukemia. Am J Kidney Dis 1988; 11(5): 442–5PubMedGoogle Scholar
  103. 103.
    Monballyu J, Zachee P, Verberckmoes R, et al. Transient acute renal failure due to tumor-lysis-induced severe phosphate load in a patient with Burkitt’s lymphoma. Clin Nephrol 1984; 22(1): 47–50PubMedGoogle Scholar
  104. 104.
    Kaplan BS, Hebert D, Morrell RE. Acute renal failure induced by hyperphosphatemia in acute lymphoblastic leukemia. Can Med Assoc J 1981; 124(4): 429–31PubMedGoogle Scholar
  105. 105.
    Fox I, Palella T, Kelley W. Hyperuricemia: a marker for cell energy crisis. N Engl J Med 1987; 317(2): 111–2PubMedCrossRefGoogle Scholar
  106. 106.
    Sillos EM, Shenep JL, Burghen GA, et al. Lactic acidosis: a metabolic complication of hematologic malignancies: case report and review of the literature. Cancer 2001; 92(9): 2237–46PubMedCrossRefGoogle Scholar
  107. 107.
    Andreoli SP, Clark JH, McGuire WA, et al. Purine excretion during tumor lysis in children with acute lymphocytic leukemia receiving allopurinol: relationship to acute renal failure. J Pediatr 1986; 109(2): 292–8PubMedCrossRefGoogle Scholar
  108. 108.
    Spielman WS, Thompson CI. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol 1982; 242(5): F423–35PubMedGoogle Scholar
  109. 109.
    Hall J, Granger J, Hester R. Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am J Physiol 1985; 248 (3 Pt 2): F340–6PubMedGoogle Scholar
  110. 110.
    Wolf G, Hegewisch-Becker S, Hossfeld DK, et al. Hyperuricemia and renal insufficiency associated with malignant disease: urate oxidase as an efficient therapy? Am J Kidney Dis 1999; 34(5): E20PubMedCrossRefGoogle Scholar
  111. 111.
    Leach M, Parsons RM, Reilly JT, et al. Efficacy of urate oxidase (uricozyme) in tumour lysis induced urate nephropathy. Clin Lab Haematol 1998; 20(3): 169–72PubMedCrossRefGoogle Scholar
  112. 112.
    Elion GB, Kovensky A, Hitchings GH. Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochem Pharmacol 1966; 15(7): 863–80PubMedCrossRefGoogle Scholar
  113. 113.
    Elion GB, Yu TF, Gutman AB, et al. Renal clearance of oxipurinol, the chief metabolite of allopurinol. Am J Med 1968; 45(1): 69–77PubMedCrossRefGoogle Scholar
  114. 114.
    Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity: description and guidelines for prevention in patients with renal insufficiency. Am J Med 1984; 76(1): 47–56PubMedCrossRefGoogle Scholar
  115. 115.
    Fox IH, Kelley WN. Management of gout. JAMA 1979; 242(4): 361–4PubMedCrossRefGoogle Scholar
  116. 116.
    Mclnnes GT, Lawson DH, Jick H. Acute adverse reactions attributed to allopurinol in hospitalised patients. Ann Rheum Dis 1981; 40(3): 245–9CrossRefGoogle Scholar
  117. 117.
    Altman KI, Smull K, Guzman-Barron ES. A new method for the preparation of uncase and the effect of uricase on the blood uric acid levels of the chicken? Arch Biochem 1949; 21: 158–65PubMedGoogle Scholar
  118. 118.
    London M, Hudson PB. Uricolytic activity of purified uricase in two human beings. Science 1957; 125: 937–8PubMedCrossRefGoogle Scholar
  119. 119.
    Ducros J, Saingra S, Rampai M, et al. Hemolytic anemia due to G6PD deficiency and urate oxidase in a kidney-transplant patient. Clin Nephrol 1991; 35(2): 89–90PubMedGoogle Scholar
  120. 120.
    Patte C, Sakiroglu O, Sommelet D. European experience in the treatment of hyperuricemia. Semin Hematol 2001; 38(4 Suppl. 10): 9–12PubMedCrossRefGoogle Scholar
  121. 121.
    Atra A, Gerrard M, Hobson R, et al. Improved cure rate in children with B-cell acute lymphoblastic leukaemia (B-ALL) and stage IV B-cell non-Hodgkin’s lymphoma (B-NHL)-results of the UKCCSG 9003 protocol. Br J Cancer 1998; 77(12): 2281–5PubMedCrossRefGoogle Scholar
  122. 122.
    Cairo MS, Krailo MD, Morse M, et al. Long-term follow-up of short intensive multiagent chemotherapy without high-dose methotrexate (‘Orange’) in children with advanced-non-lymphoblastic non-Hodgkin’s lymphoma: a Children’s Cancer Group Report. Leukemia 2002; 16: 594–600PubMedCrossRefGoogle Scholar
  123. 123.
    Murphy SB, Bowman WP, Abromowitch M, et al. Results of treatment of advanced-stage Burkitt’s lymphoma and B cell (SIg+) acute lymphoblastic leukemia with high-dose fractionated cyclophosphamide and coordinated high-dose methotrexate and cytarabine. J Clin Oncol 1986; 4(12): 1732–9PubMedGoogle Scholar
  124. 124.
    Pattison ME, Lee SM, Ogden DA. Continuous arteriovenous hemodiafiltration: an aggressive approach to the management of acute renal failure. Am J Kidney Dis 1988; 11(1): 43–7PubMedGoogle Scholar
  125. 125.
    Sakarcan A, Quigley R. Hyperphosphatemia in tumor lysis syndrome: the role of hemodialysis and continuous veno-venous hemofiltration. Pediatr Nephrol 1994; 8(3): 351–3PubMedCrossRefGoogle Scholar
  126. 126.
    Saccente SL, Kohaut EC, Berkow RL. Prevention of tumor lysis syndrome using continuous veno-venous hemofiltration. Pediatr Nephrol 1995; 9(5): 569–73PubMedCrossRefGoogle Scholar
  127. 127.
    Agha-Razii M, Amyot SL, Pichette V, et al. Continuous veno-venous hemodiafiltration for the treatment of spontaneous tumor lysis syndrome complicated by acute renal failure and severe hyperuricemia. Clin Nephrol 2000; 54(1): 59–63PubMedGoogle Scholar
  128. 128.
    Schelling JR, Ghandour FZ, Strickland TJ, et al. Management of tumor lysis syndrome with standard continuous arteriovenous hemodialysis: case report and a review of the literature. Ren Fail 1998; 20(4): 635–44PubMedCrossRefGoogle Scholar
  129. 129.
    Pichette V, Leblanc M, Bonnardeaux A, et al. High dialysate flow rate continuous arteriovenous hemodialysis: a new approach for the treatment of acute renal failure and tumor lysis syndrome. Am J Kidney Dis 1994; 23(4): 591–6PubMedGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Department of Hematology-OncologySt Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of PediatricsUniversity of Tennessee College of MedicineMemphisUSA

Personalised recommendations